test_jit_save_load.py 25.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19 20
import unittest
import numpy as np
L
Leo Chen 已提交
21
import paddle
22
from paddle.static import InputSpec
23 24
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
25
from paddle.fluid.dygraph import declarative, ProgramTranslator
26
from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME, VARIABLE_FILENAME
27 28

BATCH_SIZE = 32
29
BATCH_NUM = 10
30 31 32
SEED = 10


33 34
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
35
        np.random.seed(SEED)
36 37 38
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
39 40 41

    def __reader__():
        for _ in range(BATCH_NUM):
42 43 44
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
45 46 47 48 49 50 51 52 53 54 55 56 57 58

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


59 60 61 62 63 64 65 66 67 68
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


69 70 71 72 73 74 75 76 77
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


95 96 97 98 99 100 101 102 103 104 105 106 107
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
        self._load_linear1 = fluid.dygraph.jit.load(model_path)
        self._load_linear2 = fluid.dygraph.jit.load(model_path)

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
class EmptyLayer(paddle.nn.Layer):
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


174
def train(layer, input_size=784, label_size=1):
175
    # create optimizer
L
Leo Chen 已提交
176
    sgd = fluid.optimizer.SGDOptimizer(
177
        learning_rate=0.01, parameter_list=layer.parameters())
178 179
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
180 181
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
182 183 184 185 186 187 188 189 190 191 192
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
193
        sgd.minimize(avg_loss)
194 195 196 197
        layer.clear_gradients()
    return [img], layer, avg_loss


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


219 220 221 222 223 224
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
        self.model_path = "model.test_jit_save_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
225 226
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
227

228
    def train_and_save_model(self, model_path=None, configs=None):
229 230
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
231
        final_model_path = model_path if model_path else self.model_path
232
        orig_input_types = [type(x) for x in example_inputs]
233
        fluid.dygraph.jit.save(
234 235 236 237
            layer=layer,
            model_path=final_model_path,
            input_spec=example_inputs,
            configs=configs)
238 239
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
240 241
        return layer

242
    def test_save_load(self):
243 244 245
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
246 247 248 249 250 251 252 253 254
        program_translator = ProgramTranslator()
        program_translator.enable(False)
        loaded_layer = fluid.dygraph.jit.load(self.model_path)
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)
        program_translator.enable(True)

    def load_and_inference(self, train_layer, infer_layer):
255
        train_layer.eval()
256
        infer_layer.eval()
257 258 259 260 261 262
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

263 264
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
265 266
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
267 268
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
269 270 271
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

272 273
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
274
        # construct new model
275
        new_layer = LinearNet(784, 1)
276 277 278 279 280
        orig_state_dict = new_layer.state_dict()
        load_state_dict, _ = fluid.dygraph.load_dygraph(self.model_path)
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
281 282 283 284 285 286 287
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

288
    def test_load_dygraph_no_path(self):
289 290 291 292 293
        model_path = "model.test_jit_save_load.no_path"
        new_layer = LinearNet(784, 1)
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

294 295 296 297 298 299 300 301 302
    def test_jit_load_model_incomplete(self):
        model_path = "model.test_jit_save_load.remove_variables"
        self.train_and_save_model(model_path=model_path)
        # remove `__variables__`	
        var_path = os.path.join(model_path, VARIABLE_FILENAME)
        os.remove(var_path)
        with self.assertRaises(ValueError):
            paddle.jit.load(model_path)

303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

        model_path = "model.input_spec.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
        configs.output_spec = net.forward.outputs[:1]
        fluid.dygraph.jit.save(net, model_path, configs=configs)

        # 2. load to infer
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

        model_path = "model.multi_inout.output_spec1"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
        configs.output_spec = net.forward.outputs[:2]
        fluid.dygraph.jit.save(net, model_path, configs=configs)

        # 3. load to infer
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
        model_path = "model.multi_inout.output_spec2"
        configs.output_spec = net.forward.outputs[:1]
        fluid.dygraph.jit.save(net, model_path, [input_x], configs)
        # 2. load again
        infer_layer2 = fluid.dygraph.jit.load(model_path, configs=configs)
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))


372 373 374 375 376
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
377 378
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    def basic_save_load(self, layer, model_path, configs):
        # 1. train & save
        example_inputs, train_layer, _ = train(layer)
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=example_inputs,
            configs=configs)
        # 2. load 
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        train_layer.eval()
        # 3. inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

    def test_model_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.model_filename = "__simplenet__"
        self.basic_save_load(layer, model_path, configs)

    def test_params_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.params_filename"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.params_filename = "__params__"
        self.basic_save_load(layer, model_path, configs)

    def test_separate_params(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.separate_params"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.separate_params = True
        self.basic_save_load(layer, model_path, configs)

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.output_spec = [out]
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=[x],
            configs=configs)

        train_layer.eval()
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))


447 448 449 450 451 452 453
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
        self.model_path = "model.jit_multi_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
454 455
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
        fluid.dygraph.jit.save(
            layer=layer, model_path=self.model_path, input_spec=example_inputs)

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


475 476 477 478 479 480 481
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
        self.model_path = "model.jit_prune_model_and_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
482 483
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.output_spec = [hidden]
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=self.model_path,
            input_spec=[x],
            configs=configs)

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

        infer_layer = fluid.dygraph.jit.load(self.model_path)

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
        var_info_path = os.path.join(self.model_path, EXTRA_VAR_INFO_FILENAME)
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
            fluid.dygraph.jit.load(self.model_path)


533 534 535 536 537 538 539 540 541 542 543 544 545
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)

    def verify_inference_correctness(self, layer, model_path, with_label=False):
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
546
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
547
        if with_label:
Z
Zhou Wei 已提交
548
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
            pred, _ = layer(x, y)
            pred = pred.numpy()
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

        model_path = "test_no_prune_to_static_after_train"
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

        model_path = "test_no_prune_to_static_no_train"
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

        model_path = "test_no_prune_no_to_static_after_train"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

        model_path = "test_no_prune_no_to_static_after_train_with_examples"
        fluid.dygraph.jit.save(
            layer=layer, model_path=model_path, input_spec=example_inputs)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        model_path = "test_no_prune_no_to_static_no_train"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

        model_path = "test_prune_to_static_after_train"
        configs = paddle.SaveLoadConfig()
        configs.output_spec = [out]
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
            configs=configs)

        self.verify_inference_correctness(layer, model_path, True)

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

        model_path = "test_prune_to_static_no_train"
        configs = paddle.SaveLoadConfig()
        # TODO: no train, cannot get output_spec var here
        # now only can use index
        configs.output_spec = layer.forward.outputs[:1]
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
            configs=configs)

        self.verify_inference_correctness(layer, model_path, True)

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

        model_path = "test_no_prune_input_spec_name_warning"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name='feed_input')
            ])

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

        model_path = "test_not_prune_output_spec_name_warning"
        configs = paddle.SaveLoadConfig()
Z
Zhou Wei 已提交
680
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
        configs.output_spec = [out]
        paddle.jit.save(layer, model_path, configs=configs)

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        model_path = "test_prune_input_spec_name_error"
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[InputSpec(
                    shape=[None, 784], dtype='float32')])
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input')
                ])

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

        model_path = "test_prune_to_static_after_train"
        configs = paddle.SaveLoadConfig()
Z
Zhou Wei 已提交
712
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
713 714 715 716 717 718 719 720 721 722 723 724
        configs.output_spec = [out]
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name="image")
                ],
                configs=configs)


725 726 727 728 729 730 731 732
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
    def setUp(self):
        self.model_path = "model.jit_save_load_empty_layer"
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
733
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
    def setUp(self):
        self.model_path = "model.jit_save_load_no_param_layer"
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
749 750
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
751 752 753 754 755 756 757
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


758 759
if __name__ == '__main__':
    unittest.main()