cuda_device_function.h 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16

17
#include <cuda.h>
18 19 20
// NOTE(): support float16 to half in header file.
#define PADDLE_CUDA_FP16
#include <cuda_fp16.h>
21 22
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
23
#include "paddle/fluid/platform/float16.h"
24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace platform {

#if CUDA_VERSION < 9000
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
  mask = __ballot_sync(FULL_WARP_MASK, (predicate))
C
chengduoZH 已提交
34 35
#endif

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
inline static int RoundToPowerOfTwo(int dim) {
  if (dim > 512) {
    return 1024;
  } else if (dim > 256) {
    return 512;
  } else if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
  }
}

#define CUDA_LAUNCH_KERNEL_BASE(dim, ...)  \
  case (dim): {                            \
    constexpr auto kPowerOfTwoDim = (dim); \
    __VA_ARGS__;                           \
  } break

58 59 60 61 62 63
#define CUDA_LAUNCH_KERNEL_HELPER(...)          \
  CUDA_LAUNCH_KERNEL_BASE(1024, ##__VA_ARGS__); \
  CUDA_LAUNCH_KERNEL_BASE(512, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(256, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(128, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(64, ##__VA_ARGS__);   \
64 65
  CUDA_LAUNCH_KERNEL_BASE(32, ##__VA_ARGS__);

C
chengduoZH 已提交
66
template <typename T>
C
chengduoZH 已提交
67
__forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
68 69
                                                 int delta,
                                                 int width = warpSize) {
C
chengduoZH 已提交
70 71 72
#if CUDA_VERSION < 9000
  return __shfl_down(val, delta, width);
#else
73
  return __shfl_down_sync(mask, val, static_cast<unsigned>(delta), width);
C
chengduoZH 已提交
74
#endif
C
chengduoZH 已提交
75 76
}

77 78 79 80 81 82 83 84 85 86
template <typename T>
__forceinline__ __device__ T CudaShuffleXorSync(unsigned mask, T val,
                                                int width = warpSize) {
#if CUDA_VERSION < 9000
  return __shfl_xor(val, width);
#else
  return __shfl_xor_sync(mask, val, width);
#endif
}

87 88 89 90 91 92
// CUDA 9.0 have native compatible float16 shfl_down
#if CUDA_VERSION < 9000
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
93 94 95
  return float16(
      __shfl_down(static_cast<half>(val), static_cast<unsigned>(delta), width));
}
96 97 98 99 100
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
  return float16(__shfl_xor(static_cast<half>(val), width));
}
101 102 103 104 105 106 107
#else
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
  return float16(__shfl_down_sync(mask, static_cast<half>(val),
                                  static_cast<unsigned>(delta), width));
108
}
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

template <>
__forceinline__ __device__ paddle::platform::complex64 CudaShuffleDownSync(
    unsigned mask, paddle::platform::complex64 val, int delta, int width) {
  float real = static_cast<float>(__shfl_down_sync(
      mask, static_cast<float>(val.real), static_cast<unsigned>(delta), width));
  float imag = static_cast<float>(__shfl_down_sync(
      mask, static_cast<float>(val.imag), static_cast<unsigned>(delta), width));
  return paddle::platform::complex64(real, imag);
}

template <>
__forceinline__ __device__ paddle::platform::complex128 CudaShuffleDownSync(
    unsigned mask, paddle::platform::complex128 val, int delta, int width) {
  double real = static_cast<double>(
      __shfl_down_sync(mask, static_cast<double>(val.real),
                       static_cast<unsigned>(delta), width));
  double imag = static_cast<double>(
      __shfl_down_sync(mask, static_cast<double>(val.imag),
                       static_cast<unsigned>(delta), width));
  return paddle::platform::complex128(real, imag);
}

132 133 134 135 136
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
  return float16(__shfl_xor_sync(mask, static_cast<half>(val), width));
}
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

template <>
__forceinline__ __device__ paddle::platform::complex64 CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex64 val, int width) {
  float real = static_cast<float>(
      __shfl_xor_sync(mask, static_cast<float>(val.real), width));
  float imag = static_cast<float>(
      __shfl_xor_sync(mask, static_cast<float>(val.imag), width));
  return paddle::platform::complex64(real, imag);
}

template <>
__forceinline__ __device__ paddle::platform::complex128 CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex128 val, int width) {
  double real = static_cast<double>(
      __shfl_xor_sync(mask, static_cast<double>(val.real), width));
  double imag = static_cast<double>(
      __shfl_xor_sync(mask, static_cast<double>(val.imag), width));
  return paddle::platform::complex128(real, imag);
}
157 158
#endif

C
chengduoZH 已提交
159
template <typename T>
C
chengduoZH 已提交
160 161 162 163 164
__forceinline__ __device__ T CudaShuffleSync(unsigned mask, T val, int src_line,
                                             int width = 32) {
#if CUDA_VERSION < 9000
  return __shfl(val, src_line, width);
#else
C
chengduoZH 已提交
165
  return __shfl_sync(mask, val, src_line, width);
166
#endif
C
chengduoZH 已提交
167
}
168 169

template <typename T>
170 171 172 173 174
HOSTDEVICE T Infinity() {
  return INFINITY;
}

template <typename T>
175 176 177 178 179 180 181 182 183 184 185 186 187
__device__ T reduceSum(T val, int tid, int len) {
  // NOTE(zcd): The warp size should be taken from the
  // parameters of the GPU but not specified as 32 simply.
  // To make the reduceSum more efficiently,
  // I use Warp-Level Parallelism and assume the Warp size
  // is 32 which may be different for different GPU,
  // but most card's warp size is 32.
  const int warpSize = 32;
  __shared__ T shm[warpSize];
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, tid < len);

  for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
188
    val += platform::CudaShuffleDownSync(mask, val, offset);
189 190

  if (tid < warpSize) shm[tid] = 0;
C
chengduoZH 已提交
191
  __syncthreads();
192 193 194 195 196 197 198 199 200 201 202

  if (tid % warpSize == 0) {
    shm[tid / warpSize] = val;
  }
  __syncthreads();

  CREATE_SHFL_MASK(mask, tid < warpSize);

  if (tid < warpSize) {
    val = shm[tid];
    for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
203
      val += platform::CudaShuffleDownSync(mask, val, offset);
204 205 206 207 208 209
  }
  return val;
}

}  // namespace platform
}  // namespace paddle