cuda_device_function.h 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16

17
#include <cuda.h>
18 19 20 21
// NOTE(): support float16 to half in header file.
#define PADDLE_CUDA_FP16
#include <cuda_fp16.h>
#include "paddle/fluid/platform/float16.h"
22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace platform {

#if CUDA_VERSION < 9000
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
  mask = __ballot_sync(FULL_WARP_MASK, (predicate))
C
chengduoZH 已提交
32 33
#endif

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
inline static int RoundToPowerOfTwo(int dim) {
  if (dim > 512) {
    return 1024;
  } else if (dim > 256) {
    return 512;
  } else if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
  }
}

#define CUDA_LAUNCH_KERNEL_BASE(dim, ...)  \
  case (dim): {                            \
    constexpr auto kPowerOfTwoDim = (dim); \
    __VA_ARGS__;                           \
  } break

56 57 58 59 60 61
#define CUDA_LAUNCH_KERNEL_HELPER(...)          \
  CUDA_LAUNCH_KERNEL_BASE(1024, ##__VA_ARGS__); \
  CUDA_LAUNCH_KERNEL_BASE(512, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(256, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(128, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(64, ##__VA_ARGS__);   \
62 63
  CUDA_LAUNCH_KERNEL_BASE(32, ##__VA_ARGS__);

C
chengduoZH 已提交
64
template <typename T>
C
chengduoZH 已提交
65
__forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
66 67
                                                 int delta,
                                                 int width = warpSize) {
C
chengduoZH 已提交
68 69 70
#if CUDA_VERSION < 9000
  return __shfl_down(val, delta, width);
#else
71
  return __shfl_down_sync(mask, val, static_cast<unsigned>(delta), width);
C
chengduoZH 已提交
72
#endif
C
chengduoZH 已提交
73 74
}

75 76 77 78 79 80 81 82 83 84
template <typename T>
__forceinline__ __device__ T CudaShuffleXorSync(unsigned mask, T val,
                                                int width = warpSize) {
#if CUDA_VERSION < 9000
  return __shfl_xor(val, width);
#else
  return __shfl_xor_sync(mask, val, width);
#endif
}

85 86 87 88 89 90
// CUDA 9.0 have native compatible float16 shfl_down
#if CUDA_VERSION < 9000
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
91 92 93
  return float16(
      __shfl_down(static_cast<half>(val), static_cast<unsigned>(delta), width));
}
94 95 96 97 98
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
  return float16(__shfl_xor(static_cast<half>(val), width));
}
99 100 101 102 103 104 105
#else
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
  return float16(__shfl_down_sync(mask, static_cast<half>(val),
                                  static_cast<unsigned>(delta), width));
106
}
107 108 109 110 111
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
  return float16(__shfl_xor_sync(mask, static_cast<half>(val), width));
}
112 113
#endif

C
chengduoZH 已提交
114
template <typename T>
C
chengduoZH 已提交
115 116 117 118 119
__forceinline__ __device__ T CudaShuffleSync(unsigned mask, T val, int src_line,
                                             int width = 32) {
#if CUDA_VERSION < 9000
  return __shfl(val, src_line, width);
#else
C
chengduoZH 已提交
120
  return __shfl_sync(mask, val, src_line, width);
121
#endif
C
chengduoZH 已提交
122
}
123 124

template <typename T>
125 126 127 128 129
HOSTDEVICE T Infinity() {
  return INFINITY;
}

template <typename T>
130 131 132 133 134 135 136 137 138 139 140 141 142
__device__ T reduceSum(T val, int tid, int len) {
  // NOTE(zcd): The warp size should be taken from the
  // parameters of the GPU but not specified as 32 simply.
  // To make the reduceSum more efficiently,
  // I use Warp-Level Parallelism and assume the Warp size
  // is 32 which may be different for different GPU,
  // but most card's warp size is 32.
  const int warpSize = 32;
  __shared__ T shm[warpSize];
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, tid < len);

  for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
143
    val += platform::CudaShuffleDownSync(mask, val, offset);
144 145

  if (tid < warpSize) shm[tid] = 0;
C
chengduoZH 已提交
146
  __syncthreads();
147 148 149 150 151 152 153 154 155 156 157

  if (tid % warpSize == 0) {
    shm[tid / warpSize] = val;
  }
  __syncthreads();

  CREATE_SHFL_MASK(mask, tid < warpSize);

  if (tid < warpSize) {
    val = shm[tid];
    for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
158
      val += platform::CudaShuffleDownSync(mask, val, offset);
159 160 161 162 163 164
  }
  return val;
}

}  // namespace platform
}  // namespace paddle