test_sparse_sum_op.py 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

import paddle

devices = ['cpu']
if paddle.device.get_device() != "cpu":
    devices.append(paddle.device.get_device())


class TestSparseSum(unittest.TestCase):
    """
    Test the API paddle.sparse.sum on some sparse tensors.
    x: sparse tensor, out: sparse tensor
    """

    def to_sparse(self, x, format, sparse_dim=None):
        if format == 'coo':
            if sparse_dim:
                return x.detach().to_sparse_coo(sparse_dim=sparse_dim)
            else:
                return x.detach().to_sparse_coo(sparse_dim=x.ndim)
        elif format == 'csr':
            return x.detach().to_sparse_csr()

    def check_result(
        self, x_shape, dims, keepdim, format, sparse_dim=None, dtype=None
    ):
        for device in devices:
            paddle.device.set_device(device)
            if sparse_dim:
                mask_shape = [*x_shape[:sparse_dim]] + [1] * (
                    len(x_shape) - sparse_dim
                )
                mask = paddle.randint(0, 2, mask_shape)
            else:
                mask = paddle.randint(0, 2, x_shape)

            while paddle.sum(mask) == 0:
                if sparse_dim:
                    mask_shape = [*x_shape[:sparse_dim]] + [1] * (
                        len(x_shape) - sparse_dim
                    )
                    mask = paddle.randint(0, 2, mask_shape)
                else:
                    mask = paddle.randint(0, 2, x_shape)
            # "+ 1" to make sure that all zero elements in "origin_x" is caused by multiplying by "mask",
            # or the backward checks may fail.
            origin_x = (paddle.rand(x_shape, dtype='float64') + 1) * mask
            dense_x = origin_x.detach()
            dense_x.stop_gradient = False
            dense_out = paddle.sum(dense_x, dims, keepdim=keepdim, dtype=dtype)
            sp_x = self.to_sparse(origin_x, format, sparse_dim)
            sp_x.stop_gradient = False
            sp_out = paddle.sparse.sum(sp_x, dims, keepdim=keepdim, dtype=dtype)
            np.testing.assert_allclose(
                sp_out.to_dense().numpy(), dense_out.numpy(), rtol=1e-05
            )
            dense_out.backward()
            sp_out.backward()
            np.testing.assert_allclose(
                sp_x.grad.to_dense().numpy(),
                (dense_x.grad * mask).numpy(),
                rtol=1e-05,
            )

    def test_sum_1d(self):
        self.check_result([5], None, False, 'coo')
        self.check_result([5], None, True, 'coo')
        self.check_result([5], 0, False, 'coo')
        self.check_result([5], 0, True, 'coo')

    def test_sum_2d(self):
        self.check_result([2, 5], None, False, 'coo', dtype="float32")
        self.check_result([2, 5], None, True, 'coo')
        self.check_result([2, 5], 0, True, 'coo', dtype="float32")
        self.check_result([2, 5], 0, False, 'coo')
        self.check_result([2, 5], 1, False, 'coo')
        self.check_result([2, 5], None, True, 'csr', dtype="float32")
        self.check_result([2, 5], -1, True, 'csr', dtype="float32")
        self.check_result([2, 5], 0, False, 'coo')
        self.check_result([2, 5], -1, True, 'csr')

    def test_sum_3d(self):
        self.check_result([6, 2, 3], -1, True, 'csr')
        for i in [0, 1, -2, None]:
            self.check_result([6, 2, 3], i, False, 'coo')
            self.check_result([6, 2, 3], i, True, 'coo')

    def test_sum_nd(self):
        for i in range(6):
            self.check_result([8, 3, 4, 4, 5, 3], i, False, 'coo')
            self.check_result([8, 3, 4, 4, 5, 3], i, True, 'coo')
            # Randint now only supports access to dimension 0 to 9.
            self.check_result([2, 3, 4, 2, 3, 4, 2, 3, 4], i, False, 'coo')

    def test_sum_sparse_dim(self):
        for i in range(6):
            self.check_result([8, 3, 4, 4, 5, 3], i, False, 'coo', sparse_dim=3)
            self.check_result([8, 3, 4, 4, 5, 3], i, True, 'coo', sparse_dim=3)


class TestSparseSumStatic(unittest.TestCase):
    def check_result_coo(self, x_shape, dims, keepdim, dtype=None):
        for device in devices:
            paddle.device.set_device(device)
            mask = paddle.randint(0, 2, x_shape)
            while paddle.sum(mask) == 0:
                mask = paddle.randint(0, 2, x_shape)
            origin_data = (paddle.rand(x_shape, dtype='float32') + 1) * mask
            sparse_data = origin_data.detach().to_sparse_coo(
                sparse_dim=len(x_shape)
            )
            indices_data = sparse_data.indices()
            values_data = sparse_data.values()

            dense_x = origin_data
            dense_out = paddle.sum(dense_x, dims, keepdim=keepdim, dtype=dtype)

            paddle.enable_static()
            with paddle.static.program_guard(
                paddle.static.Program(), paddle.static.Program()
            ):
                indices = paddle.static.data(
                    name='indices',
                    shape=indices_data.shape,
                    dtype=indices_data.dtype,
                )
                values = paddle.static.data(
                    name='values',
                    shape=values_data.shape,
                    dtype=values_data.dtype,
                )
                sp_x = paddle.sparse.sparse_coo_tensor(
                    indices,
                    values,
                    shape=origin_data.shape,
                    dtype=origin_data.dtype,
                )
                sp_out = paddle.sparse.sum(
                    sp_x, dims, keepdim=keepdim, dtype=dtype
                )
                sp_dense_out = sp_out.to_dense()

                sparse_exe = paddle.static.Executor()
                sparse_fetch = sparse_exe.run(
                    feed={
                        'indices': indices_data.numpy(),
                        "values": values_data.numpy(),
                    },
                    fetch_list=[sp_dense_out],
                    return_numpy=True,
                )

                np.testing.assert_allclose(
                    dense_out.numpy(), sparse_fetch[0], rtol=1e-5
                )
            paddle.disable_static()

    def test_sum(self):
        # 1d
        self.check_result_coo([5], None, False)
        self.check_result_coo([5], None, True)
        self.check_result_coo([5], 0, True)
        self.check_result_coo([5], 0, False)

        # 2d
        self.check_result_coo([2, 5], None, False, dtype="float32")
        self.check_result_coo([2, 5], None, True)
        self.check_result_coo([2, 5], 0, True, dtype="float32")
        self.check_result_coo([2, 5], 0, False)
        self.check_result_coo([2, 5], 1, False)
        self.check_result_coo([2, 5], 0, False)

        # 3d
        for i in [0, 1, -2, None]:
            self.check_result_coo([6, 2, 3], i, False)
            self.check_result_coo([6, 2, 3], i, True)

        # nd
        for i in range(6):
            self.check_result_coo([8, 3, 4, 4, 5, 3], i, False)
            self.check_result_coo([8, 3, 4, 4, 5, 3], i, True)
            # Randint now only supports access to dimension 0 to 9.
            self.check_result_coo([2, 3, 4, 2, 3, 4, 2, 3, 4], i, False)


if __name__ == "__main__":
    unittest.main()