Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
14c642cb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
14c642cb
编写于
5月 09, 2023
作者:
Z
Zhan Rongrui
提交者:
GitHub
5月 09, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【Hackathon 4th No.30】为 Paddle 新增 paddle.sparse.sum 稀疏 API (#51406)
上级
0f1b077b
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
1544 addition
and
1 deletion
+1544
-1
paddle/phi/api/yaml/sparse_backward.yaml
paddle/phi/api/yaml/sparse_backward.yaml
+11
-0
paddle/phi/api/yaml/sparse_ops.yaml
paddle/phi/api/yaml/sparse_ops.yaml
+11
-0
paddle/phi/kernels/cpu/reduce_sum_grad_kernel.cc
paddle/phi/kernels/cpu/reduce_sum_grad_kernel.cc
+1
-0
paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
+1
-0
paddle/phi/kernels/sparse/cpu/sum_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/sum_grad_kernel.cc
+219
-0
paddle/phi/kernels/sparse/cpu/sum_kernel.cc
paddle/phi/kernels/sparse/cpu/sum_kernel.cc
+283
-0
paddle/phi/kernels/sparse/gpu/sum_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/sum_grad_kernel.cu
+235
-0
paddle/phi/kernels/sparse/gpu/sum_kernel.cu
paddle/phi/kernels/sparse/gpu/sum_kernel.cu
+456
-0
paddle/phi/kernels/sparse/unary_grad_kernel.h
paddle/phi/kernels/sparse/unary_grad_kernel.h
+17
-0
paddle/phi/kernels/sparse/unary_kernel.h
paddle/phi/kernels/sparse/unary_kernel.h
+16
-0
python/paddle/fluid/tests/unittests/test_sparse_sum_op.py
python/paddle/fluid/tests/unittests/test_sparse_sum_op.py
+204
-0
python/paddle/sparse/__init__.py
python/paddle/sparse/__init__.py
+2
-0
python/paddle/sparse/unary.py
python/paddle/sparse/unary.py
+88
-1
未找到文件。
paddle/phi/api/yaml/sparse_backward.yaml
浏览文件 @
14c642cb
...
...
@@ -367,6 +367,17 @@
func
:
subtract_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
subtract_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
-
backward_op
:
sum_grad
forward
:
sum(Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, IntArray axis={}, bool keepdim=false)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
sum_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sum_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_op
:
sync_batch_norm_grad
forward
:
sync_batch_norm_(Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
args
:
(Tensor x, Tensor scale, Tensor bias, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
...
...
paddle/phi/api/yaml/sparse_ops.yaml
浏览文件 @
14c642cb
...
...
@@ -334,6 +334,17 @@
layout
:
x
backward
:
subtract_grad
-
op
:
sum
args
:
(Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false)
output
:
Tensor(out)
infer_meta
:
func
:
SumInferMeta
kernel
:
func
:
sum_coo{sparse_coo -> sparse_coo},
sum_csr{sparse_csr -> sparse_csr}
data_type
:
x
backward
:
sum_grad
-
op
:
sync_batch_norm_
args
:
(Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics)
output
:
Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
...
...
paddle/phi/kernels/cpu/reduce_sum_grad_kernel.cc
浏览文件 @
14c642cb
...
...
@@ -51,6 +51,7 @@ PD_REGISTER_KERNEL(sum_grad,
float
,
double
,
phi
::
dtype
::
float16
,
int16_t
,
int
,
int64_t
,
phi
::
dtype
::
complex
<
float
>
,
...
...
paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
浏览文件 @
14c642cb
...
...
@@ -67,6 +67,7 @@ PD_REGISTER_KERNEL(sum_grad,
double
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
,
int16_t
,
int
,
int64_t
,
phi
::
dtype
::
complex
<
float
>
,
...
...
paddle/phi/kernels/sparse/cpu/sum_grad_kernel.cc
0 → 100644
浏览文件 @
14c642cb
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sparse/unary_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/reduce_sum_grad_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/sparse/impl/unary_grad_kernel_impl.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
IntT
,
typename
Context
>
void
SumCooGradCPUKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
SparseCooTensor
&
dout
,
const
IntArray
&
axis
,
bool
keep_dim
,
SparseCooTensor
*
dx
)
{
EmptyLikeCooKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
dx
);
unsigned
int
n_dim
=
axis
.
size
();
const
DenseTensor
&
x_indices
=
x
.
indices
();
const
DenseTensor
&
dout_indices
=
dout
.
indices
();
const
DenseTensor
&
dout_values
=
dout
.
values
();
const
auto
*
dout_indices_data
=
dout_indices
.
data
<
int64_t
>
();
const
auto
*
dout_values_data
=
dout_values
.
data
<
T
>
();
DenseTensor
*
dx_indices
=
dx
->
mutable_indices
();
DenseTensor
*
dx_values
=
dx
->
mutable_values
();
*
dx_indices
=
x_indices
;
const
auto
*
dx_indices_data
=
dx_indices
->
data
<
int64_t
>
();
auto
*
dx_values_data
=
dx_values
->
data
<
T
>
();
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_constant
;
if
(
n_dim
==
0
)
{
T
value
=
dout_values
.
data
<
T
>
()[
0
];
set_constant
(
dev_ctx
,
dx_values
,
value
);
if
(
dx_values
->
dtype
()
!=
dx
->
dtype
())
{
*
dx_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
*
dx_values
,
dx
->
dtype
());
}
return
;
}
auto
dim
=
axis
[
0
]
<
0
?
x
.
dims
().
size
()
+
axis
[
0
]
:
axis
[
0
];
auto
sparse_dim
=
x
.
sparse_dim
();
if
(
dim
>=
sparse_dim
)
{
dim
=
dim
-
sparse_dim
+
1
;
phi
::
ReduceSumGradKernel
<
T
,
Context
>
(
dev_ctx
,
x
.
values
(),
dout
.
values
(),
{
dim
},
keep_dim
,
false
,
dx_values
);
if
(
dx_values
->
dtype
()
!=
dx
->
dtype
())
{
*
dx_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
*
dx_values
,
dx
->
dtype
());
}
return
;
}
// Ensure the sparse_dim is not less than 1.
if
(
sparse_dim
==
1
)
{
keep_dim
=
true
;
}
int64_t
dense_dim
=
1
;
for
(
auto
i
=
1
;
i
<
x
.
values
().
dims
().
size
();
++
i
)
{
dense_dim
*=
x
.
values
().
dims
()[
i
];
}
std
::
map
<
std
::
vector
<
IntT
>
,
int64_t
>
indices_map
;
for
(
auto
j
=
0
;
j
<
dout_indices
.
dims
()[
1
];
++
j
)
{
std
::
vector
<
IntT
>
pos
;
for
(
int
i
=
0
;
i
<
dout_indices
.
dims
()[
0
];
++
i
)
{
pos
.
push_back
(
dout_indices_data
[
j
+
i
*
dout_indices
.
dims
()[
1
]]);
}
indices_map
[
pos
]
=
j
;
}
for
(
auto
j
=
0
;
j
<
dx_indices
->
dims
()[
1
];
++
j
)
{
std
::
vector
<
IntT
>
pos
;
for
(
int
i
=
0
;
i
<
dx_indices
->
dims
()[
0
];
++
i
)
{
if
(
i
!=
dim
)
{
pos
.
push_back
(
dx_indices_data
[
j
+
i
*
dx_indices
->
dims
()[
1
]]);
}
else
if
(
keep_dim
)
{
pos
.
push_back
(
0
);
}
}
for
(
int
i
=
0
;
i
<
dense_dim
;
++
i
)
{
dx_values_data
[
i
+
j
*
dense_dim
]
=
dout_values_data
[
i
+
indices_map
[
pos
]
*
dense_dim
];
}
}
if
(
dx_values
->
dtype
()
!=
dx
->
dtype
())
{
*
dx_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
*
dx_values
,
dx
->
dtype
());
}
}
template
<
typename
T
,
typename
Context
>
void
SumCsrGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
SparseCsrTensor
&
dout
,
const
IntArray
&
axis
,
bool
keep_dim
,
SparseCsrTensor
*
dx
)
{
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
dx
);
unsigned
int
n_dim
=
axis
.
size
();
const
DenseTensor
&
x_crows
=
x
.
crows
();
const
DenseTensor
&
x_cols
=
x
.
cols
();
const
DenseTensor
&
dout_values
=
dout
.
values
();
const
auto
*
x_crows_data
=
x_crows
.
data
<
int64_t
>
();
DenseTensor
*
dx_crows
=
dx
->
mutable_crows
();
DenseTensor
*
dx_cols
=
dx
->
mutable_cols
();
DenseTensor
*
dx_values
=
dx
->
mutable_values
();
*
dx_crows
=
x_crows
;
*
dx_cols
=
x_cols
;
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_constant
;
if
(
n_dim
==
0
)
{
T
value
=
dout_values
.
data
<
T
>
()[
0
];
set_constant
(
dev_ctx
,
dx_values
,
value
);
if
(
dx_values
->
dtype
()
!=
dx
->
dtype
())
{
*
dx_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
*
dx_values
,
dx
->
dtype
());
}
return
;
}
PADDLE_ENFORCE_EQ
(
axis
[
0
],
-
1
,
phi
::
errors
::
Unimplemented
(
"`axis` of SumCsrKernel only support None or -1 now."
"More number will be supported in the future."
));
if
(
x
.
dims
().
size
()
==
2
)
{
int
value_index
=
0
;
for
(
int
k
=
0
;
k
<
x
.
dims
()[
0
];
++
k
)
{
if
(
x_crows_data
[
k
]
==
x_crows_data
[
k
+
1
])
{
continue
;
}
T
value
=
dout_values
.
data
<
T
>
()[
value_index
];
set_constant
(
dev_ctx
,
dx_values
,
value
);
value_index
+=
1
;
}
}
else
{
int
dout_value_index
=
0
;
int
dx_value_index
=
0
;
for
(
auto
batch
=
0
;
batch
<
x
.
dims
()[
0
];
++
batch
)
{
for
(
auto
k
=
batch
*
(
x
.
dims
()[
1
]
+
1
);
k
<
batch
*
(
x
.
dims
()[
1
]
+
1
)
+
x
.
dims
()[
1
];
++
k
)
{
if
(
x_crows_data
[
k
]
==
x_crows_data
[
k
+
1
])
{
continue
;
}
T
value
=
dout_values
.
data
<
T
>
()[
dout_value_index
];
for
(
auto
i
=
x_crows_data
[
k
];
i
<
x_crows_data
[
k
+
1
];
++
i
)
{
dx_values
->
data
<
T
>
()[
dx_value_index
]
=
value
;
dx_value_index
++
;
}
dout_value_index
++
;
}
}
}
if
(
dx_values
->
dtype
()
!=
dx
->
dtype
())
{
*
dx_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
*
dx_values
,
dx
->
dtype
());
}
}
template
<
typename
T
,
typename
Context
>
void
SumCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
SparseCooTensor
&
dout
,
const
IntArray
&
axis
,
bool
keep_dim
,
SparseCooTensor
*
dx
)
{
PD_VISIT_BASE_INTEGRAL_TYPES
(
x
.
indices
().
dtype
(),
"SumCooGradCPUKernel"
,
([
&
]
{
SumCooGradCPUKernel
<
T
,
data_t
,
Context
>
(
dev_ctx
,
x
,
dout
,
axis
,
keep_dim
,
dx
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sum_coo_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SumCooGradKernel
,
float
,
double
,
int16_t
,
int
,
int64_t
,
bool
)
{}
PD_REGISTER_KERNEL
(
sum_csr_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SumCsrGradKernel
,
float
,
double
,
int16_t
,
int
,
int64_t
,
bool
)
{}
paddle/phi/kernels/sparse/cpu/sum_kernel.cc
0 → 100644
浏览文件 @
14c642cb
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sparse/unary_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
IntT
,
typename
Context
>
void
SumCooCPUKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCooTensor
*
out
)
{
size_t
n_dim
=
axis
.
size
();
auto
sparse_dim
=
x
.
sparse_dim
();
// create out sparse tensor
const
auto
&
x_dims
=
x
.
dims
();
const
auto
&
x_indices
=
x
.
indices
();
const
auto
&
x_values
=
x
.
values
();
DDim
out_dims
;
DenseTensor
out_indices
;
DenseTensor
out_values
;
if
(
n_dim
==
0
)
{
std
::
vector
<
int64_t
>
out_indices_shape
;
if
(
keep_dim
)
{
out_dims
=
make_ddim
(
std
::
vector
<
int64_t
>
(
x_dims
.
size
(),
1
));
out_indices_shape
=
{
sparse_dim
,
1
};
}
else
{
out_dims
=
make_ddim
({
1
});
out_indices_shape
=
{
1
};
}
out_indices
=
Empty
<
IntT
,
Context
>
(
dev_ctx
,
out_indices_shape
);
auto
*
out_indices_data
=
out_indices
.
data
<
IntT
>
();
std
::
fill
(
out_indices_data
,
out_indices_data
+
out_indices
.
numel
(),
0
);
out_values
=
phi
::
Sum
<
T
>
(
dev_ctx
,
x
.
values
(),
{},
dtype
,
keep_dim
);
out
->
SetMember
(
out_indices
,
out_values
,
out_dims
,
x
.
coalesced
());
return
;
}
auto
dim
=
axis
[
0
]
<
0
?
x_dims
.
size
()
+
axis
[
0
]
:
axis
[
0
];
const
auto
*
x_indices_data
=
x_indices
.
data
<
IntT
>
();
const
auto
*
x_values_data
=
x_values
.
data
<
T
>
();
std
::
vector
<
int64_t
>
dims
;
for
(
int
i
=
0
;
i
<
x
.
dims
().
size
();
++
i
)
{
if
(
i
!=
dim
)
{
dims
.
emplace_back
(
x
.
dims
()[
i
]);
}
else
if
(
keep_dim
||
(
dim
<
sparse_dim
&&
sparse_dim
==
1
))
{
dims
.
emplace_back
(
1
);
}
}
out_dims
=
make_ddim
(
dims
);
if
(
dim
>=
sparse_dim
)
{
out_indices
=
x_indices
;
dim
=
dim
-
sparse_dim
+
1
;
out_values
=
phi
::
Sum
<
T
>
(
dev_ctx
,
x
.
values
(),
{
dim
},
dtype
,
keep_dim
);
out
->
SetMember
(
out_indices
,
out_values
,
out_dims
,
x
.
coalesced
());
return
;
}
// Ensure the sparse_dim is not less than 1.
if
(
sparse_dim
==
1
)
{
keep_dim
=
true
;
}
// if axis in sparse_dim and keep_dim, sparse_dim will be reduced.
if
(
!
keep_dim
)
{
sparse_dim
-=
1
;
}
// indices_map is a mapping from output's position to values to be summed.
std
::
map
<
std
::
vector
<
IntT
>
,
std
::
vector
<
int64_t
>>
indices_map
;
for
(
int64_t
j
=
0
;
j
<
x_indices
.
dims
()[
1
];
++
j
)
{
std
::
vector
<
IntT
>
pos
;
for
(
int64_t
i
=
0
;
i
<
x_indices
.
dims
()[
0
];
++
i
)
{
if
(
dim
!=
i
)
{
pos
.
emplace_back
(
x_indices_data
[
j
+
i
*
x_indices
.
dims
()[
1
]]);
}
else
if
(
keep_dim
)
{
pos
.
emplace_back
(
0
);
}
}
indices_map
[
pos
].
emplace_back
(
j
);
}
std
::
vector
<
int
>
out_values_dims
;
out_values_dims
.
push_back
(
static_cast
<
int
>
(
indices_map
.
size
()));
for
(
auto
i
=
1
;
i
<
x
.
values
().
dims
().
size
();
++
i
)
{
out_values_dims
.
push_back
(
static_cast
<
int
>
(
x
.
values
().
dims
()[
i
]));
}
int64_t
dense_dim
=
std
::
accumulate
(
out_values_dims
.
begin
()
+
1
,
out_values_dims
.
end
(),
1
,
std
::
multiplies
<
int64_t
>
());
out_indices
=
Empty
<
IntT
,
Context
>
(
dev_ctx
,
{
sparse_dim
,
static_cast
<
int
>
(
indices_map
.
size
())});
out_values
=
Empty
<
T
,
Context
>
(
dev_ctx
,
out_values_dims
);
auto
*
out_indices_data
=
out_indices
.
data
<
IntT
>
();
auto
*
out_values_data
=
out_values
.
data
<
T
>
();
auto
iter_indices_map
=
indices_map
.
begin
();
for
(
size_t
j
=
0
;
j
<
indices_map
.
size
();
++
j
)
{
std
::
vector
<
IntT
>
pos
=
iter_indices_map
->
first
;
std
::
vector
<
int64_t
>
values_index
=
iter_indices_map
->
second
;
iter_indices_map
++
;
for
(
auto
i
=
0
;
i
<
sparse_dim
;
++
i
)
{
out_indices_data
[
j
+
i
*
indices_map
.
size
()]
=
pos
[
i
];
}
for
(
auto
i
=
0
;
i
<
dense_dim
;
++
i
)
{
T
out_value
=
0
;
for
(
auto
index
:
values_index
)
{
out_value
+=
x_values_data
[
i
+
index
*
dense_dim
];
}
out_values_data
[
i
+
j
*
dense_dim
]
=
out_value
;
}
}
if
(
dtype
!=
phi
::
DataType
::
UNDEFINED
&&
dtype
!=
x
.
dtype
())
{
out_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
out_values
,
dtype
);
}
out
->
SetMember
(
out_indices
,
out_values
,
out_dims
,
x
.
coalesced
());
}
template
<
typename
T
,
typename
Context
>
void
SumCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCsrTensor
*
out
)
{
size_t
n_dim
=
axis
.
size
();
const
auto
&
x_crows
=
x
.
crows
();
const
auto
&
x_values
=
x
.
values
();
const
auto
*
x_crows_data
=
x_crows
.
data
<
int64_t
>
();
const
auto
*
x_values_data
=
x_values
.
data
<
T
>
();
DenseTensor
out_crows
,
out_cols
,
out_values
;
DDim
out_dims
;
if
(
n_dim
==
0
)
{
if
(
keep_dim
&&
x
.
dims
().
size
()
==
3
)
{
out_dims
=
make_ddim
({
1
,
1
,
1
});
}
else
{
out_dims
=
make_ddim
({
1
,
1
});
}
out_crows
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
2
});
// crows = [0, 1]
auto
*
out_crows_data
=
out_crows
.
data
<
int64_t
>
();
out_crows_data
[
0
]
=
0
;
out_crows_data
[
1
]
=
1
;
out_cols
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
1
});
// crows = [0]
auto
*
out_cols_data
=
out_cols
.
data
<
int64_t
>
();
out_cols_data
[
0
]
=
0
;
out_values
=
phi
::
Sum
<
T
>
(
dev_ctx
,
x
.
values
(),
{},
dtype
,
true
);
}
else
{
PADDLE_ENFORCE_EQ
(
axis
[
0
],
-
1
,
phi
::
errors
::
Unimplemented
(
"`axis` of SumCsrKernel only support None or -1 now."
"More number will be supported in the future."
));
out_crows
=
EmptyLike
<
int64_t
,
Context
>
(
dev_ctx
,
x
.
crows
());
auto
*
out_crows_data
=
out_crows
.
data
<
int64_t
>
();
std
::
vector
<
T
>
out_data
;
if
(
x
.
dims
().
size
()
==
2
)
{
out_crows_data
[
0
]
=
0
;
out_dims
=
make_ddim
({
x
.
dims
()[
0
],
1
});
for
(
int
i
=
0
;
i
<
x
.
dims
()[
0
];
++
i
)
{
if
(
x_crows_data
[
i
]
!=
x_crows_data
[
i
+
1
])
{
T
sum_value
=
0
;
for
(
auto
j
=
x_crows_data
[
i
];
j
<
x_crows_data
[
i
+
1
];
++
j
)
{
sum_value
+=
x_values_data
[
j
];
}
out_crows_data
[
i
+
1
]
=
out_crows_data
[
i
]
+
1
;
out_data
.
emplace_back
(
sum_value
);
}
else
{
out_crows_data
[
i
+
1
]
=
out_crows_data
[
i
];
}
}
}
else
{
if
(
keep_dim
)
{
out_dims
=
make_ddim
({
x
.
dims
()[
0
],
x
.
dims
()[
1
],
1
});
}
else
{
out_dims
=
make_ddim
({
x
.
dims
()[
0
],
x
.
dims
()[
1
]});
}
int
j
=
0
;
for
(
int
batch
=
0
;
batch
<
x
.
dims
()[
0
];
++
batch
)
{
auto
*
cur_x_crows_data
=
x_crows_data
+
batch
*
x
.
dims
()[
2
];
auto
*
cur_out_crows_data
=
out_crows_data
+
batch
*
x
.
dims
()[
2
];
for
(
int
i
=
0
;
i
<
x
.
dims
()[
1
];
++
i
)
{
cur_out_crows_data
[
0
]
=
0
;
if
(
cur_x_crows_data
[
i
]
!=
cur_x_crows_data
[
i
+
1
])
{
T
sum_value
=
0
;
for
(
auto
k
=
cur_x_crows_data
[
i
];
k
<
cur_x_crows_data
[
i
+
1
];
++
k
)
{
sum_value
+=
x_values_data
[
j
++
];
}
out_data
.
emplace_back
(
sum_value
);
cur_out_crows_data
[
i
+
1
]
=
cur_out_crows_data
[
i
]
+
1
;
}
else
{
cur_out_crows_data
[
i
+
1
]
=
cur_out_crows_data
[
i
];
}
}
}
}
out_cols
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
static_cast
<
int
>
(
out_data
.
size
())});
out_values
=
Empty
<
T
,
Context
>
(
dev_ctx
,
{
static_cast
<
int
>
(
out_data
.
size
())});
auto
*
out_cols_data
=
out_cols
.
data
<
int64_t
>
();
T
*
out_values_data
=
out_values
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
out_data
.
size
();
++
i
)
{
out_cols_data
[
i
]
=
0
;
out_values_data
[
i
]
=
out_data
[
i
];
}
if
(
dtype
!=
phi
::
DataType
::
UNDEFINED
&&
dtype
!=
x
.
dtype
())
{
out_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
out_values
,
dtype
);
}
}
out
->
SetMember
(
out_crows
,
out_cols
,
out_values
,
out_dims
);
}
template
<
typename
T
,
typename
Context
>
void
SumCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCooTensor
*
out
)
{
PD_VISIT_BASE_INTEGRAL_TYPES
(
x
.
indices
().
dtype
(),
"SumCooCPUKernel"
,
([
&
]
{
SumCooCPUKernel
<
T
,
data_t
,
Context
>
(
dev_ctx
,
x
,
axis
,
dtype
,
keep_dim
,
out
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sum_coo
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SumCooKernel
,
float
,
double
,
int16_t
,
int
,
int64_t
,
bool
)
{
kernel
->
OutputAt
(
0
).
SetDataType
(
paddle
::
DataType
::
UNDEFINED
);
}
PD_REGISTER_KERNEL
(
sum_csr
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SumCsrKernel
,
float
,
double
,
int16_t
,
int
,
int64_t
,
bool
)
{
kernel
->
OutputAt
(
0
).
SetDataType
(
paddle
::
DataType
::
UNDEFINED
);
}
paddle/phi/kernels/sparse/gpu/sum_grad_kernel.cu
0 → 100644
浏览文件 @
14c642cb
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/reduce_sum_grad_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/sparse/unary_grad_kernel.h"
#include "paddle/phi/kernels/sparse/unary_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
>
__global__
void
SetValueCudaKernel
(
const
T
*
value
,
const
int64_t
length
,
T
*
data
)
{
CUDA_KERNEL_LOOP_TYPE
(
index
,
length
,
int64_t
)
{
data
[
index
]
=
value
[
0
];
}
}
template
<
typename
T
>
__global__
void
SumCsr2DGradCudaKernel
(
const
int64_t
*
x_crows_data
,
const
T
*
dout_values_data
,
const
int64_t
x_dim0
,
T
*
dx_values_data
)
{
// dout_crows_data[index] should be equal to index;
CUDA_KERNEL_LOOP_TYPE
(
index
,
x_dim0
,
int64_t
)
{
T
value
=
dout_values_data
[
index
];
for
(
auto
i
=
x_crows_data
[
index
];
i
<
x_crows_data
[
index
+
1
];
++
i
)
{
dx_values_data
[
i
]
=
value
;
}
}
}
template
<
typename
T
>
__global__
void
SumCsr3DGradCudaKernel
(
const
int64_t
*
x_crows_data
,
const
T
*
dout_values_data
,
const
int64_t
x_dim0
,
const
int64_t
x_dim1
,
T
*
dx_values_data
)
{
// dout_crows_data[index] should be equal to number;
CUDA_KERNEL_LOOP_TYPE
(
index
,
x_dim0
*
(
x_dim1
+
1
),
int64_t
)
{
int64_t
batch
=
index
/
(
x_dim1
+
1
);
int64_t
number
=
index
%
(
x_dim1
+
1
);
// compute offset of dx_values_data in every batch
int64_t
batch_offset
=
0
;
for
(
int64_t
b
=
1
;
b
<=
batch
;
++
b
)
{
batch_offset
+=
x_crows_data
[
b
*
(
x_dim1
+
1
)
-
1
];
}
T
value
=
dout_values_data
[
index
-
batch
];
for
(
auto
i
=
x_crows_data
[
index
];
i
<
x_crows_data
[
index
+
1
];
++
i
)
{
dx_values_data
[
i
+
batch_offset
]
=
value
;
}
}
}
template
<
typename
T
,
typename
IntT
,
typename
Context
>
void
SumCooGradGPUKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
SparseCooTensor
&
dout
,
const
IntArray
&
axis
,
bool
keep_dim
,
SparseCooTensor
*
dx
)
{
EmptyLikeCooKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
dx
);
unsigned
int
n_dim
=
axis
.
size
();
const
DenseTensor
&
x_indices
=
x
.
indices
();
const
DenseTensor
&
dout_indices
=
dout
.
indices
();
const
DenseTensor
&
dout_values
=
dout
.
values
();
const
auto
*
dout_indices_data
=
dout_indices
.
data
<
IntT
>
();
const
auto
*
dout_values_data
=
dout_values
.
data
<
T
>
();
DenseTensor
*
dx_indices
=
dx
->
mutable_indices
();
DenseTensor
*
dx_values
=
dx
->
mutable_values
();
*
dx_indices
=
x_indices
;
const
auto
*
dx_indices_data
=
dx_indices
->
data
<
IntT
>
();
auto
*
dx_values_data
=
dx_values
->
data
<
T
>
();
if
(
n_dim
==
0
)
{
auto
length
=
dx
->
nnz
();
for
(
auto
i
=
1
;
i
<
x
.
values
().
dims
().
size
();
++
i
)
{
length
*=
x
.
values
().
dims
()[
i
];
}
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
length
,
1
);
SetValueCudaKernel
<
T
>
<<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
dout_values_data
,
length
,
dx_values_data
);
if
(
dx_values
->
dtype
()
!=
dx
->
dtype
())
{
*
dx_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
*
dx_values
,
dx
->
dtype
());
}
return
;
}
auto
dim
=
axis
[
0
]
<
0
?
x
.
dims
().
size
()
+
axis
[
0
]
:
axis
[
0
];
auto
sparse_dim
=
x
.
sparse_dim
();
if
(
dim
>=
sparse_dim
)
{
dim
=
dim
-
sparse_dim
+
1
;
phi
::
ReduceSumGradKernel
<
T
,
Context
>
(
dev_ctx
,
x
.
values
(),
dout
.
values
(),
{
dim
},
keep_dim
,
false
,
dx_values
);
}
else
{
*
dx_values
=
dout_values
;
}
if
(
dx_values
->
dtype
()
!=
dx
->
dtype
())
{
*
dx_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
*
dx_values
,
dx
->
dtype
());
}
}
template
<
typename
T
,
typename
Context
>
void
SumCsrGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
SparseCsrTensor
&
dout
,
const
IntArray
&
axis
,
bool
keep_dim
,
SparseCsrTensor
*
dx
)
{
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
dx
);
size_t
n_dim
=
axis
.
size
();
const
DenseTensor
&
x_crows
=
x
.
crows
();
const
DenseTensor
&
x_cols
=
x
.
cols
();
const
DenseTensor
&
dout_values
=
dout
.
values
();
DenseTensor
*
dx_crows
=
dx
->
mutable_crows
();
DenseTensor
*
dx_cols
=
dx
->
mutable_cols
();
DenseTensor
*
dx_values
=
dx
->
mutable_values
();
const
auto
*
x_crows_data
=
x_crows
.
data
<
int64_t
>
();
const
auto
*
dout_values_data
=
dout_values
.
data
<
T
>
();
auto
*
dx_values_data
=
dx_values
->
data
<
T
>
();
*
dx_crows
=
x_crows
;
*
dx_cols
=
x_cols
;
if
(
n_dim
==
0
)
{
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
dx
->
nnz
(),
1
);
SetValueCudaKernel
<
T
>
<<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
dout_values_data
,
dx
->
nnz
(),
dx_values_data
);
if
(
dx_values
->
dtype
()
!=
dx
->
dtype
())
{
*
dx_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
*
dx_values
,
dx
->
dtype
());
}
return
;
}
PADDLE_ENFORCE_EQ
(
axis
[
0
],
-
1
,
phi
::
errors
::
Unimplemented
(
"`axis` of SumCsrKernel only support None or -1 now."
"More number will be supported in the future."
));
if
(
x
.
dims
().
size
()
==
2
)
{
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
x
.
dims
()[
0
],
1
);
SumCsr2DGradCudaKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
x_crows_data
,
dout_values_data
,
x
.
dims
()[
0
],
dx_values_data
);
}
else
{
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
x
.
dims
()[
0
]
*
(
x
.
dims
()[
1
]
+
1
),
1
);
SumCsr3DGradCudaKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
x_crows_data
,
dout_values_data
,
x
.
dims
()[
0
],
x
.
dims
()[
1
],
dx_values_data
);
}
if
(
dx_values
->
dtype
()
!=
dx
->
dtype
())
{
*
dx_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
*
dx_values
,
dx
->
dtype
());
}
}
template
<
typename
T
,
typename
Context
>
void
SumCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
SparseCooTensor
&
dout
,
const
IntArray
&
axis
,
bool
keep_dim
,
SparseCooTensor
*
dx
)
{
PD_VISIT_BASE_INTEGRAL_TYPES
(
x
.
indices
().
dtype
(),
"SumCooGradGPUKernel"
,
([
&
]
{
SumCooGradGPUKernel
<
T
,
data_t
,
Context
>
(
dev_ctx
,
x
,
dout
,
axis
,
keep_dim
,
dx
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sum_coo_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SumCooGradKernel
,
float
,
double
,
int16_t
,
int
,
int64_t
,
bool
)
{}
PD_REGISTER_KERNEL
(
sum_csr_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SumCsrGradKernel
,
float
,
double
,
int16_t
,
int
,
int64_t
,
bool
)
{}
paddle/phi/kernels/sparse/gpu/sum_kernel.cu
0 → 100644
浏览文件 @
14c642cb
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sparse/unary_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/backends/gpu/gpu_primitives.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/cum_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/index_select_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/kernels/reshape_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
IntT
>
__global__
void
SumCooCudaKernel
(
const
IntT
*
x_indices_data
,
const
T
*
x_values_data
,
const
int64_t
x_nnz
,
const
int64_t
dense_dim
,
const
int64_t
sparse_dim
,
const
int64_t
axis
,
const
bool
keep_dim
,
IntT
*
out_indices_data
,
T
*
out_values_data
)
{
CUDA_KERNEL_LOOP_TYPE
(
index_i
,
x_nnz
,
int64_t
)
{
int64_t
i
=
0
;
for
(
int
j
=
0
;
j
<
dense_dim
;
++
j
)
{
out_values_data
[
j
+
index_i
*
dense_dim
]
=
0
;
}
int64_t
_index_j_
=
static_cast
<
int64_t
>
(
blockIdx
.
y
)
*
blockDim
.
y
+
threadIdx
.
y
;
for
(
auto
index_j
=
_index_j_
;
index_j
<
x_nnz
;
index_j
+=
static_cast
<
int64_t
>
(
blockDim
.
y
)
*
gridDim
.
y
)
{
// Determine whether the index_i and index_j elements have the same
// indices in all dimensions except for the specified axis dimension.
bool
same
=
true
;
for
(
int
j
=
0
;
j
<
sparse_dim
+
!
keep_dim
;
++
j
)
{
if
(
j
!=
axis
&&
x_indices_data
[
index_i
+
j
*
x_nnz
]
!=
x_indices_data
[
index_j
+
j
*
x_nnz
])
{
same
=
false
;
break
;
}
}
if
(
same
)
{
for
(
int
j
=
0
;
j
<
dense_dim
;
++
j
)
{
phi
::
CudaAtomicAdd
(
&
out_values_data
[
j
+
index_i
*
dense_dim
],
x_values_data
[
j
+
index_j
*
dense_dim
]);
}
}
}
if
(
_index_j_
!=
0
)
{
return
;
}
if
(
keep_dim
)
{
for
(
int
j
=
0
;
j
<
sparse_dim
;
++
j
)
{
if
(
j
==
axis
)
{
out_indices_data
[
index_i
+
j
*
x_nnz
]
=
0
;
}
else
{
out_indices_data
[
index_i
+
j
*
x_nnz
]
=
x_indices_data
[
index_i
+
j
*
x_nnz
];
}
}
return
;
}
for
(
int
j
=
0
;
j
<
sparse_dim
;
++
j
)
{
// out_indices_data [sparse_dim, x.nnz()]
int64_t
x_indices_data_offset
;
if
(
j
<
axis
)
{
x_indices_data_offset
=
index_i
+
j
*
x_nnz
;
}
else
{
x_indices_data_offset
=
index_i
+
(
j
+
1
)
*
x_nnz
;
}
out_indices_data
[
index_i
+
j
*
x_nnz
]
=
x_indices_data
[
x_indices_data_offset
];
}
}
}
__global__
void
SumAllCsrCudaKernel
(
int64_t
*
out_crows_data
,
int64_t
*
out_cols_data
)
{
CUDA_KERNEL_LOOP_TYPE
(
index
,
2
,
int64_t
)
{
out_crows_data
[
index
]
=
index
;
if
(
index
==
0
)
{
out_cols_data
[
0
]
=
0
;
}
}
}
template
<
typename
T
>
__global__
void
SumCsr2DCudaKernel
(
const
int64_t
*
x_crows_data
,
const
T
*
x_values_data
,
const
int64_t
x_dim0
,
int64_t
*
out_crows_data
,
int64_t
*
out_cols_data
,
T
*
out_values_data
)
{
CUDA_KERNEL_LOOP_TYPE
(
index
,
x_dim0
+
1
,
int64_t
)
{
out_crows_data
[
index
]
=
index
;
if
(
index
!=
x_dim0
)
{
out_cols_data
[
index
]
=
0
;
T
sum_value
=
0
;
for
(
auto
j
=
x_crows_data
[
index
];
j
<
x_crows_data
[
index
+
1
];
++
j
)
{
sum_value
+=
x_values_data
[
j
];
}
out_values_data
[
index
]
=
sum_value
;
}
}
}
template
<
typename
T
>
__global__
void
SumCsr3DCudaKernel
(
const
int64_t
*
x_crows_data
,
const
T
*
x_values_data
,
const
int64_t
x_dim0
,
const
int64_t
x_dim1
,
const
int64_t
*
batch_nnz_data
,
int64_t
*
out_crows_data
,
int64_t
*
out_cols_data
,
T
*
out_values_data
)
{
CUDA_KERNEL_LOOP_TYPE
(
index
,
x_dim0
*
(
x_dim1
+
1
),
int64_t
)
{
int64_t
batch
=
index
/
(
x_dim1
+
1
);
int64_t
number
=
index
%
(
x_dim1
+
1
);
out_crows_data
[
index
]
=
number
;
out_cols_data
[
index
]
=
0
;
if
(
number
!=
x_dim1
)
{
T
sum_value
=
0
;
int64_t
x_values_data_offset
;
if
(
batch
==
0
)
{
x_values_data_offset
=
0
;
}
else
{
x_values_data_offset
=
batch_nnz_data
[
batch
-
1
];
}
for
(
int64_t
j
=
x_crows_data
[
index
];
j
<
x_crows_data
[
index
+
1
];
++
j
)
{
sum_value
+=
x_values_data
[
j
+
x_values_data_offset
];
}
out_values_data
[
index
-
batch
]
=
sum_value
;
}
}
}
template
<
typename
T
,
typename
IntT
,
typename
Context
>
void
SumCooGPU0Kernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCooTensor
*
out
)
{
auto
sparse_dim
=
x
.
sparse_dim
();
// create out sparse tensor
const
auto
&
x_dims
=
x
.
dims
();
const
auto
&
x_indices
=
x
.
indices
();
const
auto
&
x_values
=
x
.
values
();
DDim
out_dims
;
DenseTensor
out_indices
;
DenseTensor
out_values
;
if
(
keep_dim
)
{
out_dims
=
make_ddim
(
std
::
vector
<
int64_t
>
(
x_dims
.
size
(),
1
));
out_indices
=
Empty
<
IntT
,
Context
>
(
dev_ctx
,
{
sparse_dim
,
1
});
}
else
{
out_dims
=
make_ddim
({
1
});
out_indices
=
Empty
<
IntT
,
Context
>
(
dev_ctx
,
{
1
,
1
});
}
phi
::
funcs
::
SetConstant
<
Context
,
IntT
>
set_out_indices
;
set_out_indices
(
dev_ctx
,
&
out_indices
,
static_cast
<
IntT
>
(
0
));
out_values
=
phi
::
Sum
<
T
>
(
dev_ctx
,
x
.
values
(),
{},
dtype
,
keep_dim
);
out
->
SetMember
(
out_indices
,
out_values
,
out_dims
,
x
.
coalesced
());
}
template
<
typename
T
,
typename
IntT
,
typename
Context
>
void
SumCooGPU1Kernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCooTensor
*
out
)
{
auto
sparse_dim
=
x
.
sparse_dim
();
// create out sparse tensor
const
auto
&
x_dims
=
x
.
dims
();
const
auto
&
x_indices
=
x
.
indices
();
const
auto
&
x_values
=
x
.
values
();
DDim
out_dims
;
DenseTensor
out_indices
;
DenseTensor
out_values
;
auto
n_dim
=
x
.
dims
().
size
();
auto
dim
=
axis
[
0
]
<
0
?
x_dims
.
size
()
+
axis
[
0
]
:
axis
[
0
];
std
::
vector
<
int64_t
>
dims
;
for
(
int
i
=
0
;
i
<
n_dim
;
++
i
)
{
if
(
i
!=
dim
)
{
dims
.
emplace_back
(
x
.
dims
()[
i
]);
}
else
if
(
keep_dim
||
(
dim
<
sparse_dim
&&
sparse_dim
==
1
))
{
dims
.
emplace_back
(
1
);
}
}
out_dims
=
make_ddim
(
dims
);
if
(
dim
>=
sparse_dim
)
{
out_indices
=
x_indices
;
dim
=
dim
-
sparse_dim
+
1
;
out_values
=
phi
::
Sum
<
T
>
(
dev_ctx
,
x
.
values
(),
{
dim
},
dtype
,
keep_dim
);
out
->
SetMember
(
out_indices
,
out_values
,
out_dims
,
x
.
coalesced
());
return
;
}
// Ensure the sparse_dim is not less than 1.
if
(
sparse_dim
==
1
)
{
keep_dim
=
true
;
}
// if axis in sparse_dim and keep_dim, sparse_dim will be reduced.
if
(
!
keep_dim
)
{
sparse_dim
-=
1
;
}
std
::
vector
<
int
>
out_values_dims
;
out_values_dims
.
push_back
(
x
.
nnz
());
for
(
auto
i
=
1
;
i
<
x
.
values
().
dims
().
size
();
++
i
)
{
out_values_dims
.
push_back
(
static_cast
<
int
>
(
x
.
values
().
dims
()[
i
]));
}
int64_t
dense_dim
=
std
::
accumulate
(
out_values_dims
.
begin
()
+
1
,
out_values_dims
.
end
(),
1
,
std
::
multiplies
<
int64_t
>
());
out_indices
=
Empty
<
IntT
,
Context
>
(
dev_ctx
,
{
sparse_dim
,
x
.
nnz
()});
out_values
=
Empty
<
T
,
Context
>
(
dev_ctx
,
out_values_dims
);
const
auto
*
x_indices_data
=
x_indices
.
data
<
IntT
>
();
const
auto
*
x_values_data
=
x_values
.
data
<
T
>
();
auto
*
out_indices_data
=
out_indices
.
data
<
IntT
>
();
auto
*
out_values_data
=
out_values
.
data
<
T
>
();
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig2D
(
dev_ctx
,
x
.
nnz
(),
x
.
nnz
());
SumCooCudaKernel
<
T
,
IntT
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
x_indices_data
,
x_values_data
,
x
.
nnz
(),
dense_dim
,
sparse_dim
,
dim
,
keep_dim
,
out_indices_data
,
out_values_data
);
if
(
dtype
!=
phi
::
DataType
::
UNDEFINED
&&
dtype
!=
x
.
dtype
())
{
out_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
out_values
,
dtype
);
}
out
->
SetMember
(
out_indices
,
out_values
,
out_dims
,
x
.
coalesced
());
}
template
<
typename
T
,
typename
Context
>
void
SumCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCooTensor
*
out
)
{
const
size_t
n_dim
=
axis
.
size
();
if
(
n_dim
==
0
)
{
PD_VISIT_BASE_INTEGRAL_TYPES
(
x
.
indices
().
dtype
(),
"SumCooGPUKernel"
,
([
&
]
{
SumCooGPU0Kernel
<
T
,
data_t
,
Context
>
(
dev_ctx
,
x
,
axis
,
dtype
,
keep_dim
,
out
);
}));
}
else
{
PD_VISIT_BASE_INTEGRAL_TYPES
(
x
.
indices
().
dtype
(),
"SumCooGPUKernel"
,
([
&
]
{
SumCooGPU1Kernel
<
T
,
data_t
,
Context
>
(
dev_ctx
,
x
,
axis
,
dtype
,
keep_dim
,
out
);
}));
}
}
template
<
typename
T
,
typename
Context
>
void
SumCsr0Kernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCsrTensor
*
out
)
{
auto
x_dim0
=
x
.
dims
()[
0
];
auto
x_dim1
=
x
.
dims
()[
1
];
const
auto
&
x_crows
=
x
.
crows
();
const
auto
&
x_values
=
x
.
values
();
const
auto
*
x_crows_data
=
x_crows
.
data
<
int64_t
>
();
const
auto
*
x_values_data
=
x_values
.
data
<
T
>
();
DenseTensor
out_crows
,
out_cols
,
out_values
;
DDim
out_dims
;
if
(
keep_dim
&&
x
.
dims
().
size
()
==
3
)
{
out_dims
=
make_ddim
({
1
,
1
,
1
});
}
else
{
out_dims
=
make_ddim
({
1
,
1
});
}
out_crows
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
2
});
// crows = [0, 1]
out_cols
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
1
});
// crows = [0]
auto
*
out_crows_data
=
out_crows
.
data
<
int64_t
>
();
auto
*
out_cols_data
=
out_cols
.
data
<
int64_t
>
();
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
2
,
1
);
SumAllCsrCudaKernel
<<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
out_crows_data
,
out_cols_data
);
out_values
=
phi
::
Sum
<
T
>
(
dev_ctx
,
x
.
values
(),
{},
dtype
,
true
);
out
->
SetMember
(
out_crows
,
out_cols
,
out_values
,
out_dims
);
}
template
<
typename
T
,
typename
Context
>
void
SumCsr1Kernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCsrTensor
*
out
)
{
auto
x_dim0
=
x
.
dims
()[
0
];
auto
x_dim1
=
x
.
dims
()[
1
];
const
auto
&
x_crows
=
x
.
crows
();
const
auto
&
x_values
=
x
.
values
();
const
auto
*
x_crows_data
=
x_crows
.
data
<
int64_t
>
();
const
auto
*
x_values_data
=
x_values
.
data
<
T
>
();
DenseTensor
out_crows
,
out_cols
,
out_values
;
DDim
out_dims
;
out_crows
=
EmptyLike
<
int64_t
,
Context
>
(
dev_ctx
,
x
.
crows
());
auto
*
out_crows_data
=
out_crows
.
data
<
int64_t
>
();
if
(
x
.
dims
().
size
()
==
2
)
{
out_cols
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
x_dim0
});
out_values
=
Empty
<
T
,
Context
>
(
dev_ctx
,
{
x_dim0
});
auto
*
out_cols_data
=
out_cols
.
data
<
int64_t
>
();
auto
*
out_values_data
=
out_values
.
data
<
T
>
();
out_dims
=
make_ddim
({
x_dim0
,
1
});
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
x_dim0
+
1
,
1
);
SumCsr2DCudaKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
x_crows_data
,
x_values_data
,
x_dim0
,
out_crows_data
,
out_cols_data
,
out_values_data
);
}
else
{
out_cols
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
x_dim0
*
x_dim1
});
out_values
=
Empty
<
T
,
Context
>
(
dev_ctx
,
{
x_dim0
*
x_dim1
});
auto
*
out_cols_data
=
out_cols
.
data
<
int64_t
>
();
auto
*
out_values_data
=
out_values
.
data
<
T
>
();
if
(
keep_dim
)
{
out_dims
=
make_ddim
({
x_dim0
,
x_dim1
,
1
});
}
else
{
out_dims
=
make_ddim
({
x_dim0
,
x_dim1
});
}
DenseTensor
x_crows_reshape
=
Reshape
<
int64_t
,
Context
>
(
dev_ctx
,
x_crows
,
{
x_dim0
,
x_dim1
+
1
});
DenseTensor
last_indices
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
1
});
phi
::
funcs
::
SetConstant
<
Context
,
int64_t
>
set_constant
;
set_constant
(
dev_ctx
,
&
last_indices
,
x_dim1
);
DenseTensor
x_crows_last
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
x_dim0
,
1
});
IndexSelectKernel
<
int64_t
,
Context
>
(
dev_ctx
,
x_crows_reshape
,
last_indices
,
1
,
&
x_crows_last
);
DenseTensor
batch_nnz
=
Empty
<
int64_t
,
Context
>
(
dev_ctx
,
{
x_dim0
,
1
});
CumsumKernel
<
int64_t
,
Context
>
(
dev_ctx
,
x_crows_last
,
Scalar
(
0
),
false
,
false
,
false
,
&
batch_nnz
);
auto
*
batch_nnz_data
=
batch_nnz
.
data
<
int64_t
>
();
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
x
.
dims
()[
0
]
*
(
x
.
dims
()[
1
]
+
1
),
1
);
SumCsr3DCudaKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
x_crows_data
,
x_values_data
,
x_dim0
,
x_dim1
,
batch_nnz_data
,
out_crows_data
,
out_cols_data
,
out_values_data
);
}
if
(
dtype
!=
phi
::
DataType
::
UNDEFINED
&&
dtype
!=
x
.
dtype
())
{
out_values
=
phi
::
Cast
<
T
,
Context
>
(
dev_ctx
,
out_values
,
dtype
);
}
out
->
SetMember
(
out_crows
,
out_cols
,
out_values
,
out_dims
);
}
template
<
typename
T
,
typename
Context
>
void
SumCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCsrTensor
*
out
)
{
size_t
n_dim
=
axis
.
size
();
if
(
n_dim
==
0
)
{
SumCsr0Kernel
<
T
,
Context
>
(
dev_ctx
,
x
,
axis
,
dtype
,
keep_dim
,
out
);
}
else
{
PADDLE_ENFORCE_EQ
(
axis
[
0
],
-
1
,
phi
::
errors
::
Unimplemented
(
"`axis` of SumCsrKernel only support None or -1 now."
"More number will be supported in the future."
));
SumCsr1Kernel
<
T
,
Context
>
(
dev_ctx
,
x
,
axis
,
dtype
,
keep_dim
,
out
);
}
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
sum_coo
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SumCooKernel
,
float
,
double
,
int
,
int64_t
)
{
kernel
->
OutputAt
(
0
).
SetDataType
(
paddle
::
DataType
::
UNDEFINED
);
}
PD_REGISTER_KERNEL
(
sum_csr
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SumCsrKernel
,
float
,
double
,
int
,
int64_t
)
{
kernel
->
OutputAt
(
0
).
SetDataType
(
paddle
::
DataType
::
UNDEFINED
);
}
paddle/phi/kernels/sparse/unary_grad_kernel.h
浏览文件 @
14c642cb
...
...
@@ -14,6 +14,7 @@
#pragma once
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
...
...
@@ -92,6 +93,22 @@ void TransposeCsrGradKernel(const Context& dev_ctx,
const
std
::
vector
<
int
>&
perm
,
SparseCsrTensor
*
dx
);
template
<
typename
T
,
typename
Context
>
void
SumCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
SparseCooTensor
&
dout
,
const
IntArray
&
axis
,
bool
keep_dim
,
SparseCooTensor
*
dx
);
template
<
typename
T
,
typename
Context
>
void
SumCsrGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
SparseCsrTensor
&
dout
,
const
IntArray
&
axis
,
bool
keep_dim
,
SparseCsrTensor
*
dx
);
template
<
typename
T
,
typename
Context
>
void
ReshapeCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
...
...
paddle/phi/kernels/sparse/unary_kernel.h
浏览文件 @
14c642cb
...
...
@@ -157,6 +157,22 @@ SparseCsrTensor TransposeCsr(const Context& dev_ctx,
return
csr
;
}
template
<
typename
T
,
typename
Context
>
void
SumCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCooTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
SumCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
IntArray
&
axis
,
DataType
dtype
,
bool
keep_dim
,
SparseCsrTensor
*
out
);
template
<
typename
T
,
typename
Context
>
SparseCooTensor
ReluCoo
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
)
{
SparseCooTensor
coo
;
...
...
python/paddle/fluid/tests/unittests/test_sparse_sum_op.py
0 → 100644
浏览文件 @
14c642cb
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
devices
=
[
'cpu'
]
if
paddle
.
device
.
get_device
()
!=
"cpu"
:
devices
.
append
(
paddle
.
device
.
get_device
())
class
TestSparseSum
(
unittest
.
TestCase
):
"""
Test the API paddle.sparse.sum on some sparse tensors.
x: sparse tensor, out: sparse tensor
"""
def
to_sparse
(
self
,
x
,
format
,
sparse_dim
=
None
):
if
format
==
'coo'
:
if
sparse_dim
:
return
x
.
detach
().
to_sparse_coo
(
sparse_dim
=
sparse_dim
)
else
:
return
x
.
detach
().
to_sparse_coo
(
sparse_dim
=
x
.
ndim
)
elif
format
==
'csr'
:
return
x
.
detach
().
to_sparse_csr
()
def
check_result
(
self
,
x_shape
,
dims
,
keepdim
,
format
,
sparse_dim
=
None
,
dtype
=
None
):
for
device
in
devices
:
paddle
.
device
.
set_device
(
device
)
if
sparse_dim
:
mask_shape
=
[
*
x_shape
[:
sparse_dim
]]
+
[
1
]
*
(
len
(
x_shape
)
-
sparse_dim
)
mask
=
paddle
.
randint
(
0
,
2
,
mask_shape
)
else
:
mask
=
paddle
.
randint
(
0
,
2
,
x_shape
)
while
paddle
.
sum
(
mask
)
==
0
:
if
sparse_dim
:
mask_shape
=
[
*
x_shape
[:
sparse_dim
]]
+
[
1
]
*
(
len
(
x_shape
)
-
sparse_dim
)
mask
=
paddle
.
randint
(
0
,
2
,
mask_shape
)
else
:
mask
=
paddle
.
randint
(
0
,
2
,
x_shape
)
# "+ 1" to make sure that all zero elements in "origin_x" is caused by multiplying by "mask",
# or the backward checks may fail.
origin_x
=
(
paddle
.
rand
(
x_shape
,
dtype
=
'float64'
)
+
1
)
*
mask
dense_x
=
origin_x
.
detach
()
dense_x
.
stop_gradient
=
False
dense_out
=
paddle
.
sum
(
dense_x
,
dims
,
keepdim
=
keepdim
,
dtype
=
dtype
)
sp_x
=
self
.
to_sparse
(
origin_x
,
format
,
sparse_dim
)
sp_x
.
stop_gradient
=
False
sp_out
=
paddle
.
sparse
.
sum
(
sp_x
,
dims
,
keepdim
=
keepdim
,
dtype
=
dtype
)
np
.
testing
.
assert_allclose
(
sp_out
.
to_dense
().
numpy
(),
dense_out
.
numpy
(),
rtol
=
1e-05
)
dense_out
.
backward
()
sp_out
.
backward
()
np
.
testing
.
assert_allclose
(
sp_x
.
grad
.
to_dense
().
numpy
(),
(
dense_x
.
grad
*
mask
).
numpy
(),
rtol
=
1e-05
,
)
def
test_sum_1d
(
self
):
self
.
check_result
([
5
],
None
,
False
,
'coo'
)
self
.
check_result
([
5
],
None
,
True
,
'coo'
)
self
.
check_result
([
5
],
0
,
False
,
'coo'
)
self
.
check_result
([
5
],
0
,
True
,
'coo'
)
def
test_sum_2d
(
self
):
self
.
check_result
([
2
,
5
],
None
,
False
,
'coo'
,
dtype
=
"float32"
)
self
.
check_result
([
2
,
5
],
None
,
True
,
'coo'
)
self
.
check_result
([
2
,
5
],
0
,
True
,
'coo'
,
dtype
=
"float32"
)
self
.
check_result
([
2
,
5
],
0
,
False
,
'coo'
)
self
.
check_result
([
2
,
5
],
1
,
False
,
'coo'
)
self
.
check_result
([
2
,
5
],
None
,
True
,
'csr'
,
dtype
=
"float32"
)
self
.
check_result
([
2
,
5
],
-
1
,
True
,
'csr'
,
dtype
=
"float32"
)
self
.
check_result
([
2
,
5
],
0
,
False
,
'coo'
)
self
.
check_result
([
2
,
5
],
-
1
,
True
,
'csr'
)
def
test_sum_3d
(
self
):
self
.
check_result
([
6
,
2
,
3
],
-
1
,
True
,
'csr'
)
for
i
in
[
0
,
1
,
-
2
,
None
]:
self
.
check_result
([
6
,
2
,
3
],
i
,
False
,
'coo'
)
self
.
check_result
([
6
,
2
,
3
],
i
,
True
,
'coo'
)
def
test_sum_nd
(
self
):
for
i
in
range
(
6
):
self
.
check_result
([
8
,
3
,
4
,
4
,
5
,
3
],
i
,
False
,
'coo'
)
self
.
check_result
([
8
,
3
,
4
,
4
,
5
,
3
],
i
,
True
,
'coo'
)
# Randint now only supports access to dimension 0 to 9.
self
.
check_result
([
2
,
3
,
4
,
2
,
3
,
4
,
2
,
3
,
4
],
i
,
False
,
'coo'
)
def
test_sum_sparse_dim
(
self
):
for
i
in
range
(
6
):
self
.
check_result
([
8
,
3
,
4
,
4
,
5
,
3
],
i
,
False
,
'coo'
,
sparse_dim
=
3
)
self
.
check_result
([
8
,
3
,
4
,
4
,
5
,
3
],
i
,
True
,
'coo'
,
sparse_dim
=
3
)
class
TestSparseSumStatic
(
unittest
.
TestCase
):
def
check_result_coo
(
self
,
x_shape
,
dims
,
keepdim
,
dtype
=
None
):
for
device
in
devices
:
paddle
.
device
.
set_device
(
device
)
mask
=
paddle
.
randint
(
0
,
2
,
x_shape
)
while
paddle
.
sum
(
mask
)
==
0
:
mask
=
paddle
.
randint
(
0
,
2
,
x_shape
)
origin_data
=
(
paddle
.
rand
(
x_shape
,
dtype
=
'float32'
)
+
1
)
*
mask
sparse_data
=
origin_data
.
detach
().
to_sparse_coo
(
sparse_dim
=
len
(
x_shape
)
)
indices_data
=
sparse_data
.
indices
()
values_data
=
sparse_data
.
values
()
dense_x
=
origin_data
dense_out
=
paddle
.
sum
(
dense_x
,
dims
,
keepdim
=
keepdim
,
dtype
=
dtype
)
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()
):
indices
=
paddle
.
static
.
data
(
name
=
'indices'
,
shape
=
indices_data
.
shape
,
dtype
=
indices_data
.
dtype
,
)
values
=
paddle
.
static
.
data
(
name
=
'values'
,
shape
=
values_data
.
shape
,
dtype
=
values_data
.
dtype
,
)
sp_x
=
paddle
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
shape
=
origin_data
.
shape
,
dtype
=
origin_data
.
dtype
,
)
sp_out
=
paddle
.
sparse
.
sum
(
sp_x
,
dims
,
keepdim
=
keepdim
,
dtype
=
dtype
)
sp_dense_out
=
sp_out
.
to_dense
()
sparse_exe
=
paddle
.
static
.
Executor
()
sparse_fetch
=
sparse_exe
.
run
(
feed
=
{
'indices'
:
indices_data
.
numpy
(),
"values"
:
values_data
.
numpy
(),
},
fetch_list
=
[
sp_dense_out
],
return_numpy
=
True
,
)
np
.
testing
.
assert_allclose
(
dense_out
.
numpy
(),
sparse_fetch
[
0
],
rtol
=
1e-5
)
paddle
.
disable_static
()
def
test_sum
(
self
):
# 1d
self
.
check_result_coo
([
5
],
None
,
False
)
self
.
check_result_coo
([
5
],
None
,
True
)
self
.
check_result_coo
([
5
],
0
,
True
)
self
.
check_result_coo
([
5
],
0
,
False
)
# 2d
self
.
check_result_coo
([
2
,
5
],
None
,
False
,
dtype
=
"float32"
)
self
.
check_result_coo
([
2
,
5
],
None
,
True
)
self
.
check_result_coo
([
2
,
5
],
0
,
True
,
dtype
=
"float32"
)
self
.
check_result_coo
([
2
,
5
],
0
,
False
)
self
.
check_result_coo
([
2
,
5
],
1
,
False
)
self
.
check_result_coo
([
2
,
5
],
0
,
False
)
# 3d
for
i
in
[
0
,
1
,
-
2
,
None
]:
self
.
check_result_coo
([
6
,
2
,
3
],
i
,
False
)
self
.
check_result_coo
([
6
,
2
,
3
],
i
,
True
)
# nd
for
i
in
range
(
6
):
self
.
check_result_coo
([
8
,
3
,
4
,
4
,
5
,
3
],
i
,
False
)
self
.
check_result_coo
([
8
,
3
,
4
,
4
,
5
,
3
],
i
,
True
)
# Randint now only supports access to dimension 0 to 9.
self
.
check_result_coo
([
2
,
3
,
4
,
2
,
3
,
4
,
2
,
3
,
4
],
i
,
False
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/sparse/__init__.py
浏览文件 @
14c642cb
...
...
@@ -35,6 +35,7 @@ from .unary import deg2rad
from
.unary
import
rad2deg
from
.unary
import
expm1
from
.unary
import
transpose
from
.unary
import
sum
from
.unary
import
reshape
from
.unary
import
isnan
...
...
@@ -79,6 +80,7 @@ __all__ = [
'add'
,
'subtract'
,
'transpose'
,
'sum'
,
'multiply'
,
'divide'
,
'coalesce'
,
...
...
python/paddle/sparse/unary.py
浏览文件 @
14c642cb
...
...
@@ -15,12 +15,14 @@
import
numpy
as
np
from
paddle
import
_C_ops
,
in_dynamic_mode
from
paddle.common_ops_import
import
Variable
from
paddle.fluid.data_feeder
import
check_type
,
check_variable_and_dtype
from
paddle.fluid.framework
import
(
convert_np_dtype_to_dtype_
,
core
,
dygraph_only
,
)
from
paddle.f
luid.layer_helper
import
LayerHelper
from
paddle.f
ramework
import
LayerHelper
,
in_dygraph_mode
__all__
=
[]
...
...
@@ -155,6 +157,91 @@ def transpose(x, perm, name=None):
return
_C_ops
.
sparse_transpose
(
x
,
perm
)
def
sum
(
x
,
axis
=
None
,
dtype
=
None
,
keepdim
=
False
,
name
=
None
):
"""
Computes the sum of sparse tensor elements over the given dimension, requiring x to be a SparseCooTensor or SparseCsrTensor.
Args:
x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
:attr:`None`, sum all elements of :attr:`x` and return a
Tensor with a single element, otherwise must be in the
range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
the dimension to reduce is :math:`rank + axis[i]`.
dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
of output is the same as input Tensor `x`.
keepdim (bool, optional): Whether to reserve the reduced dimension in the
output Tensor. The result Tensor will have one fewer dimension
than the :attr:`x` unless :attr:`keepdim` is true, default
value is False.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Results of summation operation on the specified axis of input Tensor `x`.
if `x.dtype='bool'` or `x.dtype='int32'`, it's data type is `'int64'`,
otherwise it's data type is the same as `x`.
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([[-2., 0.], [1., 2.]])
sparse_x = dense_x.to_sparse_coo(1)
out1 = paddle.sparse.sum(sparse_x) # [1.]
out2 = paddle.sparse.sum(sparse_x, axis=0) # [-1., 2.]
out3 = paddle.sparse.sum(sparse_x, axis=-1) # [-2., 3.]
out4 = paddle.sparse.sum(sparse_x, axis=1, keepdim=True) # [[-2.], [3.]]
"""
dtype_flag
=
False
if
dtype
is
not
None
:
dtype_flag
=
True
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
in_dygraph_mode
():
return
_C_ops
.
sparse_sum
(
x
,
axis
,
dtype
,
keepdim
)
else
:
if
axis
is
None
:
axis
=
[]
else
:
axis
=
[
axis
]
attrs
=
{
'axis'
:
axis
,
'dtype'
:
dtype
,
'keepdim'
:
keepdim
}
if
dtype_flag
:
attrs
.
update
({
'in_dtype'
:
x
.
dtype
,
'out_dtype'
:
dtype
})
check_variable_and_dtype
(
x
,
'x'
,
[
'bool'
,
'float32'
,
'float64'
,
'int16'
,
'int32'
,
'int64'
,
],
'sparse_sum'
,
)
check_type
(
axis
,
'axis'
,
(
int
,
list
,
tuple
,
type
(
None
),
Variable
),
'sparse_sum'
)
op_type
=
'sparse_sum'
helper
=
LayerHelper
(
op_type
)
if
dtype_flag
:
out
=
helper
.
create_sparse_variable_for_type_inference
(
dtype
=
dtype
)
else
:
out
=
helper
.
create_sparse_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'x'
:
x
},
outputs
=
{
'out'
:
out
},
attrs
=
attrs
)
return
out
@
dygraph_only
def
atan
(
x
,
name
=
None
):
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录