sum_kernel.cc 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sparse/unary_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"

namespace phi {
namespace sparse {

template <typename T, typename IntT, typename Context>
void SumCooCPUKernel(const Context& dev_ctx,
                     const SparseCooTensor& x,
                     const IntArray& axis,
                     DataType dtype,
                     bool keep_dim,
                     SparseCooTensor* out) {
  size_t n_dim = axis.size();
  auto sparse_dim = x.sparse_dim();
  // create out sparse tensor
  const auto& x_dims = x.dims();
  const auto& x_indices = x.indices();
  const auto& x_values = x.values();
  DDim out_dims;
  DenseTensor out_indices;
  DenseTensor out_values;
  if (n_dim == 0) {
    std::vector<int64_t> out_indices_shape;
    if (keep_dim) {
      out_dims = make_ddim(std::vector<int64_t>(x_dims.size(), 1));
      out_indices_shape = {sparse_dim, 1};
    } else {
      out_dims = make_ddim({1});
      out_indices_shape = {1};
    }
    out_indices = Empty<IntT, Context>(dev_ctx, out_indices_shape);
    auto* out_indices_data = out_indices.data<IntT>();
    std::fill(out_indices_data, out_indices_data + out_indices.numel(), 0);
    out_values = phi::Sum<T>(dev_ctx, x.values(), {}, dtype, keep_dim);
    out->SetMember(out_indices, out_values, out_dims, x.coalesced());
    return;
  }

  auto dim = axis[0] < 0 ? x_dims.size() + axis[0] : axis[0];
  const auto* x_indices_data = x_indices.data<IntT>();
  const auto* x_values_data = x_values.data<T>();

  std::vector<int64_t> dims;
  for (int i = 0; i < x.dims().size(); ++i) {
    if (i != dim) {
      dims.emplace_back(x.dims()[i]);
    } else if (keep_dim || (dim < sparse_dim && sparse_dim == 1)) {
      dims.emplace_back(1);
    }
  }
  out_dims = make_ddim(dims);

  if (dim >= sparse_dim) {
    out_indices = x_indices;
    dim = dim - sparse_dim + 1;
    out_values = phi::Sum<T>(dev_ctx, x.values(), {dim}, dtype, keep_dim);
    out->SetMember(out_indices, out_values, out_dims, x.coalesced());
    return;
  }

  // Ensure the sparse_dim is not less than 1.
  if (sparse_dim == 1) {
    keep_dim = true;
  }
  // if axis in sparse_dim and keep_dim, sparse_dim will be reduced.
  if (!keep_dim) {
    sparse_dim -= 1;
  }

  // indices_map is a mapping from output's position to values to be summed.
  std::map<std::vector<IntT>, std::vector<int64_t>> indices_map;
  for (int64_t j = 0; j < x_indices.dims()[1]; ++j) {
    std::vector<IntT> pos;
    for (int64_t i = 0; i < x_indices.dims()[0]; ++i) {
      if (dim != i) {
        pos.emplace_back(x_indices_data[j + i * x_indices.dims()[1]]);
      } else if (keep_dim) {
        pos.emplace_back(0);
      }
    }
    indices_map[pos].emplace_back(j);
  }

  std::vector<int> out_values_dims;
  out_values_dims.push_back(static_cast<int>(indices_map.size()));
  for (auto i = 1; i < x.values().dims().size(); ++i) {
    out_values_dims.push_back(static_cast<int>(x.values().dims()[i]));
  }
  int64_t dense_dim = std::accumulate(out_values_dims.begin() + 1,
                                      out_values_dims.end(),
                                      1,
                                      std::multiplies<int64_t>());

  out_indices = Empty<IntT, Context>(
      dev_ctx, {sparse_dim, static_cast<int>(indices_map.size())});
  out_values = Empty<T, Context>(dev_ctx, out_values_dims);

  auto* out_indices_data = out_indices.data<IntT>();
  auto* out_values_data = out_values.data<T>();

  auto iter_indices_map = indices_map.begin();
  for (size_t j = 0; j < indices_map.size(); ++j) {
    std::vector<IntT> pos = iter_indices_map->first;
    std::vector<int64_t> values_index = iter_indices_map->second;
    iter_indices_map++;
    for (auto i = 0; i < sparse_dim; ++i) {
      out_indices_data[j + i * indices_map.size()] = pos[i];
    }
    for (auto i = 0; i < dense_dim; ++i) {
      T out_value = 0;
      for (auto index : values_index) {
        out_value += x_values_data[i + index * dense_dim];
      }
      out_values_data[i + j * dense_dim] = out_value;
    }
  }

  if (dtype != phi::DataType::UNDEFINED && dtype != x.dtype()) {
    out_values = phi::Cast<T, Context>(dev_ctx, out_values, dtype);
  }
  out->SetMember(out_indices, out_values, out_dims, x.coalesced());
}

template <typename T, typename Context>
void SumCsrKernel(const Context& dev_ctx,
                  const SparseCsrTensor& x,
                  const IntArray& axis,
                  DataType dtype,
                  bool keep_dim,
                  SparseCsrTensor* out) {
  size_t n_dim = axis.size();
  const auto& x_crows = x.crows();
  const auto& x_values = x.values();
  const auto* x_crows_data = x_crows.data<int64_t>();
  const auto* x_values_data = x_values.data<T>();

  DenseTensor out_crows, out_cols, out_values;
  DDim out_dims;
  if (n_dim == 0) {
    if (keep_dim && x.dims().size() == 3) {
      out_dims = make_ddim({1, 1, 1});
    } else {
      out_dims = make_ddim({1, 1});
    }
    out_crows = Empty<int64_t, Context>(dev_ctx, {2});  // crows = [0, 1]
    auto* out_crows_data = out_crows.data<int64_t>();
    out_crows_data[0] = 0;
    out_crows_data[1] = 1;

    out_cols = Empty<int64_t, Context>(dev_ctx, {1});  // crows = [0]
    auto* out_cols_data = out_cols.data<int64_t>();
    out_cols_data[0] = 0;
    out_values = phi::Sum<T>(dev_ctx, x.values(), {}, dtype, true);
  } else {
    PADDLE_ENFORCE_EQ(axis[0],
                      -1,
                      phi::errors::Unimplemented(
                          "`axis` of SumCsrKernel only support None or -1 now."
                          "More number will be supported in the future."));
    out_crows = EmptyLike<int64_t, Context>(dev_ctx, x.crows());
    auto* out_crows_data = out_crows.data<int64_t>();
    std::vector<T> out_data;
    if (x.dims().size() == 2) {
      out_crows_data[0] = 0;
      out_dims = make_ddim({x.dims()[0], 1});
      for (int i = 0; i < x.dims()[0]; ++i) {
        if (x_crows_data[i] != x_crows_data[i + 1]) {
          T sum_value = 0;
          for (auto j = x_crows_data[i]; j < x_crows_data[i + 1]; ++j) {
            sum_value += x_values_data[j];
          }
          out_crows_data[i + 1] = out_crows_data[i] + 1;
          out_data.emplace_back(sum_value);
        } else {
          out_crows_data[i + 1] = out_crows_data[i];
        }
      }
    } else {
      if (keep_dim) {
        out_dims = make_ddim({x.dims()[0], x.dims()[1], 1});
      } else {
        out_dims = make_ddim({x.dims()[0], x.dims()[1]});
      }
      int j = 0;
      for (int batch = 0; batch < x.dims()[0]; ++batch) {
        auto* cur_x_crows_data = x_crows_data + batch * x.dims()[2];
        auto* cur_out_crows_data = out_crows_data + batch * x.dims()[2];
        for (int i = 0; i < x.dims()[1]; ++i) {
          cur_out_crows_data[0] = 0;
          if (cur_x_crows_data[i] != cur_x_crows_data[i + 1]) {
            T sum_value = 0;
            for (auto k = cur_x_crows_data[i]; k < cur_x_crows_data[i + 1];
                 ++k) {
              sum_value += x_values_data[j++];
            }
            out_data.emplace_back(sum_value);
            cur_out_crows_data[i + 1] = cur_out_crows_data[i] + 1;
          } else {
            cur_out_crows_data[i + 1] = cur_out_crows_data[i];
          }
        }
      }
    }
    out_cols =
        Empty<int64_t, Context>(dev_ctx, {static_cast<int>(out_data.size())});
    out_values =
        Empty<T, Context>(dev_ctx, {static_cast<int>(out_data.size())});
    auto* out_cols_data = out_cols.data<int64_t>();
    T* out_values_data = out_values.data<T>();
    for (size_t i = 0; i < out_data.size(); ++i) {
      out_cols_data[i] = 0;
      out_values_data[i] = out_data[i];
    }
    if (dtype != phi::DataType::UNDEFINED && dtype != x.dtype()) {
      out_values = phi::Cast<T, Context>(dev_ctx, out_values, dtype);
    }
  }
  out->SetMember(out_crows, out_cols, out_values, out_dims);
}

template <typename T, typename Context>
void SumCooKernel(const Context& dev_ctx,
                  const SparseCooTensor& x,
                  const IntArray& axis,
                  DataType dtype,
                  bool keep_dim,
                  SparseCooTensor* out) {
  PD_VISIT_BASE_INTEGRAL_TYPES(x.indices().dtype(), "SumCooCPUKernel", ([&] {
                                 SumCooCPUKernel<T, data_t, Context>(
                                     dev_ctx, x, axis, dtype, keep_dim, out);
                               }));
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(sum_coo,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SumCooKernel,
                   float,
                   double,
                   int16_t,
                   int,
                   int64_t,
                   bool) {
  kernel->OutputAt(0).SetDataType(paddle::DataType::UNDEFINED);
}

PD_REGISTER_KERNEL(sum_csr,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SumCsrKernel,
                   float,
                   double,
                   int16_t,
                   int,
                   int64_t,
                   bool) {
  kernel->OutputAt(0).SetDataType(paddle::DataType::UNDEFINED);
}