rnn_data_provider.py 2.8 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.PyDataProvider2 import *

17 18 19
# Note that each config should has an independent provider
# in current design of PyDataProvider2.
#######################################################
20 21 22 23 24
data = [
    [[[1, 3, 2], [4, 5, 2]], 0],
    [[[0, 2], [2, 5], [0, 1, 2]], 1],
]

25

26
# Used for sequence_nest_rnn.conf
27 28 29
@provider(
    input_types=[integer_value_sub_sequence(10), integer_value(3)],
    should_shuffle=False)
30 31 32 33
def process_subseq(settings, file_name):
    for d in data:
        yield d

34

35
# Used for sequence_rnn.conf
36 37 38
@provider(
    input_types=[integer_value_sequence(10), integer_value(3)],
    should_shuffle=False)
39 40 41 42 43 44
def process_seq(settings, file_name):
    for d in data:
        seq = []
        for subseq in d[0]:
            seq += subseq
        yield seq, d[1]
45

46

47
# Used for sequence_nest_rnn_multi_input.conf
48 49 50
@provider(
    input_types=[integer_value_sub_sequence(10), integer_value(3)],
    should_shuffle=False)
51 52 53 54
def process_subseq2(settings, file_name):
    for d in data:
        yield d

55

56
# Used for sequence_rnn_multi_input.conf
57 58 59
@provider(
    input_types=[integer_value_sequence(10), integer_value(3)],
    should_shuffle=False)
60 61 62 63 64 65 66
def process_seq2(settings, file_name):
    for d in data:
        seq = []
        for subseq in d[0]:
            seq += subseq
        yield seq, d[1]

67

68
###########################################################
69
data2 = [
70 71
    [[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]], 0],
    [[[0, 2], [2, 5], [0, 1, 2]], [[1, 5], [4], [2, 3, 6, 1]], 1],
72 73
]

74

75
# Used for sequence_nest_rnn_multi_unequalength_inputs.conf
76 77 78 79 80 81
@provider(
    input_types=[
        integer_value_sub_sequence(10), integer_value_sub_sequence(10),
        integer_value(2)
    ],
    should_shuffle=False)
82 83 84 85 86
def process_unequalength_subseq(settings, file_name):
    for d in data2:
        yield d


87
# Used for sequence_rnn_multi_unequalength_inputs.conf
88 89 90 91 92
@provider(
    input_types=[
        integer_value_sequence(10), integer_value_sequence(10), integer_value(2)
    ],
    should_shuffle=False)
93 94
def process_unequalength_seq(settings, file_name):
    for d in data2:
95 96
        words1 = reduce(lambda x, y: x + y, d[0])
        words2 = reduce(lambda x, y: x + y, d[1])
97
        yield words1, words2, d[2]