rnn_data_provider.py 1.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.PyDataProvider2 import *

data = [
    [[[1, 3, 2], [4, 5, 2]], 0],
    [[[0, 2], [2, 5], [0, 1, 2]], 1],
]

22

23
@provider(input_types=[integer_value_sub_sequence(10),
24
                       integer_value(3)],
25
          should_shuffle=False)
26 27 28 29
def process_subseq(settings, file_name):
    for d in data:
        yield d

30

31
@provider(input_types=[integer_value_sequence(10),
32
                       integer_value(3)],
33
          should_shuffle=False)
34 35 36 37 38 39
def process_seq(settings, file_name):
    for d in data:
        seq = []
        for subseq in d[0]:
            seq += subseq
        yield seq, d[1]
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

data2 = [
    [[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]] ,0],
    [[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]], 1],
]

@provider(input_types=[integer_value_sub_sequence(10),
                       integer_value_sub_sequence(10),
                       integer_value(2)],
          should_shuffle=False)
def process_unequalength_subseq(settings, file_name):
    for d in data2:
        yield d


@provider(input_types=[integer_value_sequence(10),
                       integer_value_sequence(10),
                       integer_value(2)],
          should_shuffle=False)
def process_unequalength_seq(settings, file_name):
    for d in data2:
        words1=reduce(lambda x,y: x+y, d[0])
        words2=reduce(lambda x,y: x+y, d[1])
        yield words1, words2, d[2]