parallel.py 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22
import paddle
23 24 25 26 27

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
L
lilong12 已提交
28
from paddle.fluid.framework import in_dygraph_mode
29 30
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
X
xiongkun 已提交
31
from paddle.distributed.fleet.launch_utils import check_backend
32
from paddle.fluid.dygraph.parallel import ParallelEnv
L
Ligoml 已提交
33 34 35
from paddle.distributed.fleet.base.private_helper_function import (
    wait_server_ready,
)  # noqa: F401
36
from paddle.distributed import collective
L
lilong12 已提交
37 38 39
from paddle.distributed.collective import _set_group_map
from paddle.distributed.collective import _set_group_map_by_name
from paddle.distributed.collective import _get_group_map_by_name
40 41 42
from paddle.distributed.collective import _group_map_by_name
from paddle.distributed.collective import _default_group_name
from paddle.distributed.collective import _valid_backend_list
L
lilong12 已提交
43 44
from paddle.distributed.collective import _set_default_backend
from paddle.distributed.collective import _set_default_store
45 46
from paddle.distributed.collective import _new_process_group_impl
from paddle.distributed.collective import Group
47
from paddle.distributed.collective import _set_group_map_backend
48
from paddle.distributed.communication.group import _add_new_group
49

50
__all__ = []
51 52 53

ParallelStrategy = core.ParallelStrategy

54
# NOTE(chenweihang): Maintain a global parallel env to avoid
55 56 57 58 59 60 61 62 63 64
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

65

66
def _start_kv_server(port, http_server_d, size):
67
    from paddle.distributed.fleet.utils.http_server import KVServer
L
Ligoml 已提交
68

69
    http_server = KVServer(int(port), size=size)
70
    http_server.start()
71
    wait_seconds = 3
L
lilong12 已提交
72
    while http_server_d.get("running", False) or not http_server.should_stop():
73 74 75 76
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
77 78
def _is_cpuonly(backend):
    check_backend(backend)
L
Ligoml 已提交
79 80 81 82 83 84 85 86 87
    if (
        backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl']
        and (
            core.is_compiled_with_cuda()
            or core.is_compiled_with_xpu()
            or core.is_compiled_with_npu()
            or core.is_compiled_with_mlu()
        )
    ) or backend is 'xccl':
88

89 90 91 92 93 94
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
95 96 97
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
L
Ligoml 已提交
98 99 100 101
        raise ValueError(
            "paddle.distributed initialize error, "
            "environment variable %s is needed, but not set." % var_name
        )
K
kuizhiqing 已提交
102 103


X
xiongkun 已提交
104
def init_parallel_env():
105
    """
106

107
    Initialize parallel training environment in dynamic graph mode.
108

L
Ligoml 已提交
109
    Note:
110
        Now initialize both `NCCL` and `GLOO` contexts for communication.
111

112 113 114 115 116
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

117 118
    Returns:
        None
L
Ligoml 已提交
119

120 121
    Examples:
        .. code-block:: python
122

123
            # required: gpu
124 125 126 127 128 129 130 131 132 133
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
L
Ligoml 已提交
134

135 136 137 138
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
139
                # 1. initialize parallel environment
140 141
                dist.init_parallel_env()

142
                # 2. create data parallel layer & optimizer
143 144 145 146 147 148 149
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

150
                # 3. run layer
151 152 153 154
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
L
Ligoml 已提交
155

156 157 158 159 160 161 162
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
163

164 165
    """

166 167 168 169 170 171 172 173 174 175 176
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
177
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to
178
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
179 180
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
181
    # 1. gpu xpu check, must be gpu or xpu,
L
Ligoml 已提交
182 183 184 185 186 187 188
    if not (
        is_cpu_only
        or core.is_compiled_with_cuda()
        or core.is_compiled_with_xpu()
        or core.is_compiled_with_npu()
        or core.is_compiled_with_mlu()
    ):
189
        raise NotImplementedError(
L
Ligoml 已提交
190 191
            "If you want to use CPU-only version, please use 'gloo' as backend"
        )
192

193 194
    if backend == "xccl":
        FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
L
Ligoml 已提交
195 196
            parallel_env.device_type
        )
197 198 199 200 201 202 203 204 205 206 207 208 209 210
        _check_var_exists(FLAGS_selected_custom_devices)
    else:
        if not is_cpu_only and core.is_compiled_with_cuda():
            _check_var_exists("FLAGS_selected_gpus")
            backend = "nccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_xpu():
            _check_var_exists('FLAGS_selected_xpus')
            backend = "bkcl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_npu():
            _check_var_exists('FLAGS_selected_npus')
            backend = "hccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_mlu():
            _check_var_exists('FLAGS_selected_mlus')
            backend = "cncl" if backend == "auto" else backend
211

212 213 214 215 216
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

217 218 219 220 221 222
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
223
    if backend == "xccl":
L
Ligoml 已提交
224 225 226
        place = core.CustomPlace(
            parallel_env.device_type, parallel_env.device_id
        )
227
    elif is_cpu_only:
228 229 230 231 232 233 234 235 236 237 238 239 240
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
L
lilong12 已提交
241 242 243 244
    if backend in _valid_backend_list and in_dygraph_mode():
        if _default_group_name in _get_group_map_by_name():
            return _get_group_map_by_name()[_default_group_name]
        _set_default_backend(backend)
245 246 247 248 249
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
L
Ligoml 已提交
250 251
            "required to create a process group."
        )
252 253
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
L
Ligoml 已提交
254 255 256 257 258
        endpoints = (
            ":".join([master_addr, master_port])
            if master_addr and master_port
            else None
        )
259
        if endpoints is None:
260 261 262 263 264 265 266
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
L
Ligoml 已提交
267 268
            "with paddle.distributed.run module."
        )
269 270 271
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
272
        stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900"))
L
Ligoml 已提交
273 274 275 276 277 278 279
        default_store = core.TCPStore(
            master_addr,
            master_port,
            is_master,
            world_size,
            timeout=stop_check_timeout,
        )
L
lilong12 已提交
280
        _set_default_store(default_store)
L
Ligoml 已提交
281 282 283 284 285 286 287 288
        pg = _new_process_group_impl(
            backend,
            default_store,
            rank,
            world_size,
            _default_group_name,
            pg_options=None,
        )
289
        ranks = list(range(world_size))
290
        group = Group(rank, 0, ranks, pg=pg, name=_default_group_name)
L
lilong12 已提交
291 292
        _set_group_map_by_name(_default_group_name, group)
        _set_group_map(0, group)
293
        _set_group_map_backend(group, backend)
294
        _add_new_group(group)
295
        parallel_helper._set_parallel_ctx(True)
296 297

        paddle.distributed.barrier(group=group)
298 299
        return group

K
kuizhiqing 已提交
300
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
301
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
302
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
303
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
304 305 306 307 308 309 310 311
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
312 313
            if backend == "heter":
                size = {'_worker': len(node_num)}
L
Ligoml 已提交
314 315 316 317
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size),
            )
L
lilong12 已提交
318 319 320
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
321 322

    # 4. init NCCL ParallelStrategy
323
    strategy = ParallelStrategy()
324 325
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
326 327 328 329
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
330
    strategy.nrings = parallel_env.nrings
331

K
kuizhiqing 已提交
332
    # init nccl or hccl or bkcl or heter context
333 334
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
L
Ligoml 已提交
335 336 337
            core.GLOOParallelContext(strategy, place)
        )
    elif backend == "heter":
K
kuizhiqing 已提交
338
        parallel_helper._set_parallel_ctx(
L
Ligoml 已提交
339 340
            core.HeterParallelContext(strategy, parallel_env.device_id)
        )
341
    elif core.is_compiled_with_cuda():
342
        parallel_helper._set_parallel_ctx(
L
Ligoml 已提交
343 344
            core.NCCLParallelContext(strategy, place)
        )
345 346
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
L
Ligoml 已提交
347 348
            core.BKCLParallelContext(strategy, place)
        )
349 350
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
L
Ligoml 已提交
351 352
            core.HCCLParallelContext(strategy, place)
        )
353 354
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
L
Ligoml 已提交
355 356
            core.CNCLParallelContext(strategy, place)
        )
357

K
kuizhiqing 已提交
358 359 360 361 362
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
363

364
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
365

366 367 368 369
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
370
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
371
        # compare to init_gloo, we don't need to
372 373 374
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
375

376 377
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
392
    return group
393

394

L
LiYuRio 已提交
395
def get_rank(group=None):
396
    """
L
LiYuRio 已提交
397 398
    Returns the rank of current trainer in the given group, ranks are consecutive integers in [0, ``world_size``).
    If none of the group is given, the global group will be used as default.
399

L
LiYuRio 已提交
400 401
    Args:
        group (Group, optional): The communication group you want to get rank of current trainer, use global group as default if group is None.
402 403

    Returns:
L
LiYuRio 已提交
404 405 406 407
        (int) The rank of current trainer in the given group. Return -1 if the process is not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
408 409 410 411

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
412
            # Execute this script using distributed launch with one card configs.
413 414 415
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
416
            dist.init_parallel_env()
417 418 419
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
L
LiYuRio 已提交
420 421 422 423
    if in_dygraph_mode() and group:
        return group.rank

    assert group is None, "Only support group argument in eager mode."
424
    return _get_global_parallel_env().rank
425 426


L
LiYuRio 已提交
427
def get_world_size(group=None):
428
    """
L
LiYuRio 已提交
429 430
    Returns the number of trainers (number of processes participating in current job) in the given group.
    If none of the group is given, the global group will be used as default.
431

L
LiYuRio 已提交
432 433
    Args:
        group (Group, optional): The communication group you want to check world size, use global group as default if group is None.
434 435

    Returns:
L
LiYuRio 已提交
436 437 438 439
        (int) The number of trainers in the given group. Return -1 if the process if not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
440 441 442 443

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
444
            # Execute this script using distributed launch with one card configs.
445 446 447
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
448
            dist.init_parallel_env()
449
            print("The world_size is %d" % dist.get_world_size())
L
LiYuRio 已提交
450
            # The world_size is 1
451
    """
L
LiYuRio 已提交
452 453 454 455
    if in_dygraph_mode() and group:
        return group.world_size

    assert group is None, "Only support group argument in eager mode."
456
    return _get_global_parallel_env().world_size