sequence_pool_op.h 3.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <string>
Y
Yi Wang 已提交
17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

Q
QI JUN 已提交
28
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
29
class SequencePoolKernel : public framework::OpKernel<T> {
30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
33
    auto* out = context.Output<LoDTensor>("Out");
D
dzhwinter 已提交
34
    std::string pooltype = context.Attr<std::string>("pooltype");
35
    T pad_value = static_cast<T>(context.Attr<float>("pad_value"));
36 37

    auto dims = in->dims();
Q
Qiao Longfei 已提交
38
    auto lod = in->lod();
39
    auto lod_level = lod.size();
Q
Qiao Longfei 已提交
40
    // InferShape by lod
41 42 43
    PADDLE_ENFORCE_GT(
        lod_level, 0,
        "Input(X) Tensor of SequencePoolOp does not contain LoD information.");
44 45
    PADDLE_ENFORCE_LE(lod_level, 2UL,
                      "The lod level of input shall be no more than 2.");
Q
Qiao Longfei 已提交
46 47
    PADDLE_ENFORCE_GE(
        dims[0],
48
        /*batch size = */ static_cast<int64_t>(lod[lod_level - 1].size() - 1),
Q
Qiao Longfei 已提交
49
        "The first dimension of Input(X) must be large than batch size.");
50 51 52 53 54 55 56 57
    if (lod_level > 1UL) {
      PADDLE_ENFORCE_EQ(lod[0][lod[0].size() - 1], lod[1].size() - 1,
                        "The input lod information is illegal.");
      framework::LoD out_lod;
      out_lod.push_back(lod[0]);
      out->set_lod(out_lod);
    }
    dims[0] = lod[lod_level - 1].size() - 1;
Q
Qiao Longfei 已提交
58
    out->Resize({dims});
59
    out->mutable_data<T>(context.GetPlace());
J
Jacek Czaja 已提交
60 61 62 63 64 65 66 67 68 69
    Tensor* index = nullptr;

    const bool is_test = context.Attr<bool>("is_test");

    // Do not create index buffer for inference (is_test) mode
    // TODO(jczaja): Skip index buffer creation for other devices eg. GPU
    if (pooltype == "MAX" &&
        (is_test == false ||
         platform::is_cpu_place(context.GetPlace()) == false)) {
      index = context.Output<Tensor>("MaxIndex");
70 71
      index->Resize({dims});
      index->mutable_data<int>(context.GetPlace());
72
    }
D
dzhwinter 已提交
73
    math::SequencePoolFunctor<DeviceContext, T> pool;
74 75
    pool(context.template device_context<DeviceContext>(), pooltype, pad_value,
         *in, out, is_test, index);
76 77 78
  }
};

Q
QI JUN 已提交
79
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
80
class SequencePoolGradKernel : public framework::OpKernel<T> {
81 82
 public:
  void Compute(const framework::ExecutionContext& context) const override {
83
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
84
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
85
    std::string pooltype = context.Attr<std::string>("pooltype");
D
dzhwinter 已提交
86
    const Tensor* index = nullptr;
87
    if (pooltype == "MAX") {
D
dzhwinter 已提交
88
      index = context.Input<Tensor>("MaxIndex");
89
    }
D
dzhwinter 已提交
90 91 92 93
    in_g->mutable_data<T>(context.GetPlace());
    math::SequencePoolGradFunctor<DeviceContext, T> pool;
    pool(context.template device_context<DeviceContext>(), pooltype, *out_g,
         in_g, index);
94 95 96 97 98
  }
};

}  // namespace operators
}  // namespace paddle