reduce_op.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <NvInfer.h>
#include <sys/types.h>

#include <cstddef>
#include <cstdint>
#include <vector>

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;

namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

W
wenbin 已提交
38
class ReduceOpConverter : public OpConverter {
39 40
 public:
  void operator()(const framework::proto::OpDesc& op,
41 42
                  const framework::Scope& scope,
                  bool test_mode) override {
W
wenbin 已提交
43
    VLOG(4) << "convert a paddle " << op_type << " op to tensorrt reduce layer";
44
    framework::OpDesc op_desc(op, nullptr);
45
    auto reduce_type = ops_.find(op_type);
46 47 48 49
    auto* x = engine_->GetITensor(op_desc.Input("X").front());
    nvinfer1::Dims input_shape = x->getDimensions();
    int input_dims = input_shape.nbDims;

R
Ruibiao Chen 已提交
50
    bool keep_dim = PADDLE_GET_CONST(bool, op_desc.GetAttr("keep_dim"));
51
    std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
52 53
        PADDLE_GET_CONST(std::vector<int32_t>, op_desc.GetAttr("dim"));
    bool reduce_all = PADDLE_GET_CONST(bool, op_desc.GetAttr("reduce_all"));
54 55 56 57 58 59 60

    nvinfer1::IReduceLayer* layer = nullptr;
    if (reduce_all) {
      uint32_t reduce_dim = 0;
      for (int i = 0; i < input_dims; ++i) {
        reduce_dim |= 1 << i;
      }
61 62 63 64 65 66
      layer = TRT_ENGINE_ADD_LAYER(engine_,
                                   Reduce,
                                   *x,
                                   reduce_type->second.front(),
                                   reduce_dim,
                                   keep_dim);
67 68 69 70 71 72 73
    } else {
      auto CvtToBitMask = [&](const std::vector<int32_t>& dims) -> uint32_t {
        uint32_t res = 0;
        for (auto x : dims) {
          if (x < 0) {
            res |= 1 << (x + input_dims);
          } else {
W
wenbin 已提交
74
            if (!engine_->with_dynamic_shape()) x = x - 1;
75 76 77 78 79
            res |= 1 << x;
          }
        }
        return res;
      };
80 81 82 83 84 85
      layer = TRT_ENGINE_ADD_LAYER(engine_,
                                   Reduce,
                                   *x,
                                   reduce_type->second.front(),
                                   CvtToBitMask(dim),
                                   keep_dim);
86 87 88
    }

    auto output_name = op_desc.Output("Out")[0];
89 90
    // Ensure that the output type and input type are consistent.
    layer->getOutput(0)->setType(layer->getInput(0)->getType());
W
wenbin 已提交
91
    RreplenishLayerAndOutput(layer, op_type, {output_name}, test_mode);
92
  }
W
wenbin 已提交
93 94 95

 protected:
  std::string op_type;
96 97 98 99 100 101 102 103 104 105
  static const std::unordered_map<std::string,
                                  std::vector<nvinfer1::ReduceOperation>>
      ops_;
};

const std::unordered_map<std::string, std::vector<nvinfer1::ReduceOperation>>
    ReduceOpConverter::ops_ = {
        {"reduce_mean", {nvinfer1::ReduceOperation::kAVG}},
        {"reduce_sum", {nvinfer1::ReduceOperation::kSUM}},
        {"reduce_max", {nvinfer1::ReduceOperation::kMAX}},
106 107
        {"reduce_min", {nvinfer1::ReduceOperation::kMIN}},
        {"reduce_prod", {nvinfer1::ReduceOperation::kPROD}},
W
wenbin 已提交
108 109 110 111 112 113 114 115 116 117
};

class ReduceSumOpConverter : public ReduceOpConverter {
 public:
  ReduceSumOpConverter() { op_type = "reduce_sum"; }
};

class ReduceMeanOpConverter : public ReduceOpConverter {
 public:
  ReduceMeanOpConverter() { op_type = "reduce_mean"; }
118 119
};

120 121 122 123
class ReduceMaxOpConverter : public ReduceOpConverter {
 public:
  ReduceMaxOpConverter() { op_type = "reduce_max"; }
};
124 125 126 127 128 129 130 131 132 133 134

class ReduceMinOpConverter : public ReduceOpConverter {
 public:
  ReduceMinOpConverter() { op_type = "reduce_min"; }
};

class ReduceProdOpConverter : public ReduceOpConverter {
 public:
  ReduceProdOpConverter() { op_type = "reduce_prod"; }
};

135 136 137 138 139
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(reduce_sum, ReduceSumOpConverter);
W
wenbin 已提交
140
REGISTER_TRT_OP_CONVERTER(reduce_mean, ReduceMeanOpConverter);
141
REGISTER_TRT_OP_CONVERTER(reduce_max, ReduceMaxOpConverter);
142 143
REGISTER_TRT_OP_CONVERTER(reduce_min, ReduceMinOpConverter);
REGISTER_TRT_OP_CONVERTER(reduce_prod, ReduceProdOpConverter);