test_dist_op.py 5.4 KB
Newer Older
Z
Zhang Ting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core

P
pangyoki 已提交
22 23
paddle.enable_static()

Z
Zhang Ting 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

def dist(x, y, p):
    if p == 0.:
        out = np.count_nonzero(x - y)
    elif p == float("inf"):
        out = np.max(np.abs(x - y))
    elif p == float("-inf"):
        out = np.min(np.abs(x - y))
    else:
        out = np.power(np.sum(np.power(np.abs(x - y), p)), 1.0 / p)
    return np.array(out).astype(x.dtype)


class TestDistOp(OpTest):
    def setUp(self):
        self.op_type = 'dist'
        self.attrs = {}
        self.init_case()
42
        self.init_data_type()
Z
Zhang Ting 已提交
43
        self.inputs = {
44 45
            "X": np.random.random(self.x_shape).astype(self.data_type),
            "Y": np.random.random(self.y_shape).astype(self.data_type)
Z
Zhang Ting 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58
        }

        self.attrs["p"] = self.p
        self.outputs = {
            "Out": dist(self.inputs["X"], self.inputs["Y"], self.attrs["p"])
        }
        self.gradient = self.calc_gradient()

    def init_case(self):
        self.x_shape = (120)
        self.y_shape = (120)
        self.p = 0.

59 60 61 62
    def init_data_type(self):
        self.data_type = np.float32 if core.is_compiled_with_rocm(
        ) else np.float64

Z
Zhang Ting 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def calc_gradient(self):
        x = self.inputs["X"]
        y = self.inputs["Y"]
        p = self.attrs["p"]
        if p == 0:
            grad = np.zeros(x.shape)
        elif p in [float("inf"), float("-inf")]:
            norm = dist(x, y, p)
            x_minux_y_abs = np.abs(x - y)
            grad = np.sign(x - y)
            grad[x_minux_y_abs != norm] = 0
        else:
            norm = dist(x, y, p)
            grad = np.power(norm, 1 - p) * np.power(np.abs(x - y),
                                                    p - 1) * np.sign(x - y)

        def get_reduce_dims(x, y):
            x_reduce_dims = []
            y_reduce_dims = []

            if x.ndim >= y.ndim:
                y_reshape = tuple([1] * (x.ndim - y.ndim) + list(y.shape))
                y = y.reshape(y_reshape)
            else:
                x_reshape = tuple([1] * (y.ndim - x.ndim) + list(x.shape))
                x = x.reshape(x_reshape)
            for i in range(x.ndim):
                if x.shape[i] > y.shape[i]:
                    y_reduce_dims.append(i)
                elif x.shape[i] < y.shape[i]:
                    x_reduce_dims.append(i)
            return x_reduce_dims, y_reduce_dims

        x_reduce_dims, y_reduce_dims = get_reduce_dims(x, y)
        if len(x_reduce_dims) != 0:
            x_grad = np.sum(grad, tuple(x_reduce_dims)).reshape(x.shape)
        else:
            x_grad = grad
        if len(y_reduce_dims) != 0:
            y_grad = -np.sum(grad, tuple(y_reduce_dims)).reshape(y.shape)
        else:
            y_grad = -grad

        return x_grad, y_grad

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X", "Y"], "Out", user_defined_grads=self.gradient)


class TestDistOpCase1(TestDistOp):
    def init_case(self):
        self.x_shape = (3, 5, 5, 6)
        self.y_shape = (5, 5, 6)
        self.p = 1.


class TestDistOpCase2(TestDistOp):
    def init_case(self):
        self.x_shape = (10, 10)
        self.y_shape = (4, 10, 10)
        self.p = 2.


class TestDistOpCase3(TestDistOp):
    def init_case(self):
        self.x_shape = (15, 10)
        self.y_shape = (15, 10)
        self.p = float("inf")


class TestDistOpCase4(TestDistOp):
    def init_case(self):
        self.x_shape = (2, 3, 4, 5, 8)
        self.y_shape = (3, 1, 5, 8)
        self.p = float("-inf")


class TestDistOpCase5(TestDistOp):
    def init_case(self):
        self.x_shape = (4, 1, 4, 8)
        self.y_shape = (2, 2, 1, 4, 4, 8)
        self.p = 1.5


class TestDistAPI(unittest.TestCase):
151 152 153 154
    def init_data_type(self):
        self.data_type = 'float32' if core.is_compiled_with_rocm(
        ) else 'float64'

Z
Zhang Ting 已提交
155
    def test_api(self):
156
        self.init_data_type()
Z
Zhang Ting 已提交
157 158 159
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
160 161
            x = fluid.data(name='x', shape=[2, 3, 4, 5], dtype=self.data_type)
            y = fluid.data(name='y', shape=[3, 1, 5], dtype=self.data_type)
Z
Zhang Ting 已提交
162
            p = 2
163 164
            x_i = np.random.random((2, 3, 4, 5)).astype(self.data_type)
            y_i = np.random.random((3, 1, 5)).astype(self.data_type)
Z
Zhang Ting 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177
            result = paddle.dist(x, y, p)
            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            out = exe.run(fluid.default_main_program(),
                          feed={'x': x_i,
                                'y': y_i},
                          fetch_list=[result])
            self.assertTrue(np.allclose(dist(x_i, y_i, p), out[0]))


if __name__ == '__main__':
    unittest.main()