test_dist_op.py 5.1 KB
Newer Older
Z
Zhang Ting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core


def dist(x, y, p):
    if p == 0.:
        out = np.count_nonzero(x - y)
    elif p == float("inf"):
        out = np.max(np.abs(x - y))
    elif p == float("-inf"):
        out = np.min(np.abs(x - y))
    else:
        out = np.power(np.sum(np.power(np.abs(x - y), p)), 1.0 / p)
    return np.array(out).astype(x.dtype)


class TestDistOp(OpTest):
    def setUp(self):
        self.op_type = 'dist'
        self.attrs = {}
        self.init_case()
        self.inputs = {
            "X": np.random.random(self.x_shape).astype("float64"),
            "Y": np.random.random(self.y_shape).astype("float64")
        }

        self.attrs["p"] = self.p
        self.outputs = {
            "Out": dist(self.inputs["X"], self.inputs["Y"], self.attrs["p"])
        }
        self.gradient = self.calc_gradient()

    def init_case(self):
        self.x_shape = (120)
        self.y_shape = (120)
        self.p = 0.

    def calc_gradient(self):
        x = self.inputs["X"]
        y = self.inputs["Y"]
        p = self.attrs["p"]
        if p == 0:
            grad = np.zeros(x.shape)
        elif p in [float("inf"), float("-inf")]:
            norm = dist(x, y, p)
            x_minux_y_abs = np.abs(x - y)
            grad = np.sign(x - y)
            grad[x_minux_y_abs != norm] = 0
        else:
            norm = dist(x, y, p)
            grad = np.power(norm, 1 - p) * np.power(np.abs(x - y),
                                                    p - 1) * np.sign(x - y)

        def get_reduce_dims(x, y):
            x_reduce_dims = []
            y_reduce_dims = []

            if x.ndim >= y.ndim:
                y_reshape = tuple([1] * (x.ndim - y.ndim) + list(y.shape))
                y = y.reshape(y_reshape)
            else:
                x_reshape = tuple([1] * (y.ndim - x.ndim) + list(x.shape))
                x = x.reshape(x_reshape)
            for i in range(x.ndim):
                if x.shape[i] > y.shape[i]:
                    y_reduce_dims.append(i)
                elif x.shape[i] < y.shape[i]:
                    x_reduce_dims.append(i)
            return x_reduce_dims, y_reduce_dims

        x_reduce_dims, y_reduce_dims = get_reduce_dims(x, y)
        if len(x_reduce_dims) != 0:
            x_grad = np.sum(grad, tuple(x_reduce_dims)).reshape(x.shape)
        else:
            x_grad = grad
        if len(y_reduce_dims) != 0:
            y_grad = -np.sum(grad, tuple(y_reduce_dims)).reshape(y.shape)
        else:
            y_grad = -grad

        return x_grad, y_grad

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X", "Y"], "Out", user_defined_grads=self.gradient)


class TestDistOpCase1(TestDistOp):
    def init_case(self):
        self.x_shape = (3, 5, 5, 6)
        self.y_shape = (5, 5, 6)
        self.p = 1.


class TestDistOpCase2(TestDistOp):
    def init_case(self):
        self.x_shape = (10, 10)
        self.y_shape = (4, 10, 10)
        self.p = 2.


class TestDistOpCase3(TestDistOp):
    def init_case(self):
        self.x_shape = (15, 10)
        self.y_shape = (15, 10)
        self.p = float("inf")


class TestDistOpCase4(TestDistOp):
    def init_case(self):
        self.x_shape = (2, 3, 4, 5, 8)
        self.y_shape = (3, 1, 5, 8)
        self.p = float("-inf")


class TestDistOpCase5(TestDistOp):
    def init_case(self):
        self.x_shape = (4, 1, 4, 8)
        self.y_shape = (2, 2, 1, 4, 4, 8)
        self.p = 1.5


class TestDistAPI(unittest.TestCase):
    def test_api(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            x = fluid.data(name='x', shape=[2, 3, 4, 5], dtype='float64')
            y = fluid.data(name='y', shape=[3, 1, 5], dtype='float64')
            p = 2
            x_i = np.random.random((2, 3, 4, 5)).astype("float64")
            y_i = np.random.random((3, 1, 5)).astype("float64")
            result = paddle.dist(x, y, p)
            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            out = exe.run(fluid.default_main_program(),
                          feed={'x': x_i,
                                'y': y_i},
                          fetch_list=[result])
            self.assertTrue(np.allclose(dist(x_i, y_i, p), out[0]))


if __name__ == '__main__':
    unittest.main()