test_machine_translation.py 11.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yang Yu 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
Yan Chunwei 已提交
16
import numpy as np
17
import paddle
18 19 20 21
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as pd
from paddle.fluid.executor import Executor
Y
Yang Yu 已提交
22
import unittest
武毅 已提交
23
import os
Y
Yan Chunwei 已提交
24 25 26

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
Q
Qiao Longfei 已提交
27 28
hidden_dim = 32
word_dim = 16
Q
Qiao Longfei 已提交
29 30
batch_size = 2
max_length = 8
Y
Yan Chunwei 已提交
31 32
topk_size = 50
trg_dic_size = 10000
Q
Qiao Longfei 已提交
33
beam_size = 2
Y
Yan Chunwei 已提交
34

Q
Qiao Longfei 已提交
35 36 37
decoder_size = hidden_dim


Y
Yang Yu 已提交
38
def encoder(is_sparse):
Q
Qiao Longfei 已提交
39
    # encoder
Q
Qiao Longfei 已提交
40
    src_word_id = pd.data(
Q
Qiao Longfei 已提交
41
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
42
    src_embedding = pd.embedding(
Q
Qiao Longfei 已提交
43 44 45
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
Y
Yang Yu 已提交
46
        is_sparse=is_sparse,
Q
Qiao Longfei 已提交
47 48
        param_attr=fluid.ParamAttr(name='vemb'))

Q
Qiao Longfei 已提交
49 50 51 52 53
    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out

Q
Qiao Longfei 已提交
54

Y
Yang Yu 已提交
55
def decoder_train(context, is_sparse):
Q
Qiao Longfei 已提交
56
    # decoder
Q
Qiao Longfei 已提交
57
    trg_language_word = pd.data(
Q
Qiao Longfei 已提交
58
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
59
    trg_embedding = pd.embedding(
Q
Qiao Longfei 已提交
60 61 62
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
Y
Yang Yu 已提交
63
        is_sparse=is_sparse,
Q
Qiao Longfei 已提交
64 65
        param_attr=fluid.ParamAttr(name='vemb'))

Q
Qiao Longfei 已提交
66
    rnn = pd.DynamicRNN()
Q
Qiao Longfei 已提交
67 68
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
Q
Qiao Longfei 已提交
69 70
        pre_state = rnn.memory(init=context)
        current_state = pd.fc(input=[current_word, pre_state],
Q
Qiao Longfei 已提交
71 72
                              size=decoder_size,
                              act='tanh')
Q
Qiao Longfei 已提交
73 74 75 76 77 78

        current_score = pd.fc(input=current_state,
                              size=target_dict_dim,
                              act='softmax')
        rnn.update_memory(pre_state, current_state)
        rnn.output(current_score)
Q
Qiao Longfei 已提交
79 80

    return rnn()
Y
Yan Chunwei 已提交
81 82


Y
Yang Yu 已提交
83
def decoder_decode(context, is_sparse):
Q
Qiao Longfei 已提交
84 85
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
Y
Yang Yu 已提交
86
    counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)
Q
Qiao Longfei 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

111
        # expand the recursive_sequence_lengths of pre_state to be the same with pre_score
Q
Qiao Longfei 已提交
112 113 114 115 116 117
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

        pre_ids_emb = pd.embedding(
            input=pre_ids,
            size=[dict_size, word_dim],
            dtype='float32',
Y
Yang Yu 已提交
118
            is_sparse=is_sparse)
Q
Qiao Longfei 已提交
119 120

        # use rnn unit to update rnn
121
        current_state = pd.fc(input=[pre_state_expanded, pre_ids_emb],
Q
Qiao Longfei 已提交
122 123
                              size=decoder_size,
                              act='tanh')
124
        current_state_with_lod = pd.lod_reset(x=current_state, y=pre_score)
Q
Qiao Longfei 已提交
125
        # use score to do beam search
126
        current_score = pd.fc(input=current_state_with_lod,
Q
Qiao Longfei 已提交
127 128
                              size=target_dict_dim,
                              act='softmax')
129 130 131 132 133
        topk_scores, topk_indices = pd.topk(current_score, k=beam_size)
        # calculate accumulated scores after topk to reduce computation cost
        accu_scores = pd.elementwise_add(
            x=pd.log(topk_scores), y=pd.reshape(
                pre_score, shape=[-1]), axis=0)
Q
Qiao Longfei 已提交
134
        selected_ids, selected_scores = pd.beam_search(
135 136 137 138 139 140 141
            pre_ids,
            pre_score,
            topk_indices,
            accu_scores,
            beam_size,
            end_id=10,
            level=0)
Q
Qiao Longfei 已提交
142 143 144 145 146 147 148 149

        pd.increment(x=counter, value=1, in_place=True)

        # update the memories
        pd.array_write(current_state, array=state_array, i=counter)
        pd.array_write(selected_ids, array=ids_array, i=counter)
        pd.array_write(selected_scores, array=scores_array, i=counter)

150 151 152 153 154
        # update the break condition: up to the max length or all candidates of
        # source sentences have ended.
        length_cond = pd.less_than(x=counter, y=array_len)
        finish_cond = pd.logical_not(pd.is_empty(x=selected_ids))
        pd.logical_and(x=length_cond, y=finish_cond, out=cond)
Q
Qiao Longfei 已提交
155 156

    translation_ids, translation_scores = pd.beam_search_decode(
157
        ids=ids_array, scores=scores_array, beam_size=beam_size, end_id=10)
Q
Qiao Longfei 已提交
158 159 160 161 162 163

    # return init_ids, init_scores

    return translation_ids, translation_scores


武毅 已提交
164
def train_main(use_cuda, is_sparse, is_local=True):
Y
Yang Yu 已提交
165 166 167 168 169 170
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    rnn_out = decoder_train(context, is_sparse)
Q
Qiao Longfei 已提交
171
    label = pd.data(
Q
Qiao Longfei 已提交
172
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
173
    cost = pd.cross_entropy(input=rnn_out, label=label)
Y
Yu Yang 已提交
174
    avg_cost = pd.mean(cost)
Q
Qiao Longfei 已提交
175

176 177 178 179
    optimizer = fluid.optimizer.Adagrad(
        learning_rate=1e-4,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.1))
W
Wu Yi 已提交
180
    optimizer.minimize(avg_cost)
Y
Yan Chunwei 已提交
181 182 183

    train_data = paddle.batch(
        paddle.reader.shuffle(
Q
Qiao Longfei 已提交
184
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
Y
Yan Chunwei 已提交
185 186
        batch_size=batch_size)

187 188 189 190
    feed_order = [
        'src_word_id', 'target_language_word', 'target_language_next_word'
    ]

Y
Yan Chunwei 已提交
191 192
    exe = Executor(place)

武毅 已提交
193 194 195
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

196 197 198 199 200
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

武毅 已提交
201
        batch_id = 0
202
        for pass_id in range(1):
武毅 已提交
203 204
            for data in train_data():
                outs = exe.run(main_program,
205
                               feed=feeder.feed(data),
武毅 已提交
206 207
                               fetch_list=[avg_cost])
                avg_cost_val = np.array(outs[0])
208 209
                print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                      " avg_cost=" + str(avg_cost_val))
武毅 已提交
210 211 212 213 214 215 216
                if batch_id > 3:
                    break
                batch_id += 1

    if is_local:
        train_loop(framework.default_main_program())
    else:
G
gongweibao 已提交
217 218
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
219 220 221 222
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
223
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
224
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
225 226
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
227
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
228
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
229 230 231 232 233 234 235 236
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yan Chunwei 已提交
237 238


Y
Yang Yu 已提交
239 240 241 242 243 244 245
def decode_main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    translation_ids, translation_scores = decoder_decode(context, is_sparse)
Q
Qiao Longfei 已提交
246 247 248 249 250 251 252 253 254

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
    init_scores_data = np.array(
        [1. for _ in range(batch_size)], dtype='float32')
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
255 256
    init_recursive_seq_lens = [1] * batch_size
    init_recursive_seq_lens = [init_recursive_seq_lens, init_recursive_seq_lens]
Q
Qiao Longfei 已提交
257

258 259 260 261
    init_ids = fluid.create_lod_tensor(init_ids_data, init_recursive_seq_lens,
                                       place)
    init_scores = fluid.create_lod_tensor(init_scores_data,
                                          init_recursive_seq_lens, place)
262

Q
Qiao Longfei 已提交
263 264 265 266 267
    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

268 269 270 271 272 273 274 275
    feed_order = ['src_word_id']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

    for data in train_data():
276
        feed_dict = feeder.feed([[x[0]] for x in data])
277 278
        feed_dict['init_ids'] = init_ids
        feed_dict['init_scores'] = init_scores
Q
Qiao Longfei 已提交
279 280 281

        result_ids, result_scores = exe.run(
            framework.default_main_program(),
282
            feed=feed_dict,
Q
Qiao Longfei 已提交
283 284
            fetch_list=[translation_ids, translation_scores],
            return_numpy=False)
285
        print(result_ids.recursive_sequence_lengths())
Q
Qiao Longfei 已提交
286 287 288
        break


Y
Yang Yu 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
class TestMachineTranslation(unittest.TestCase):
    pass


@contextlib.contextmanager
def scope_prog_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            yield


def inject_test_train(use_cuda, is_sparse):
    f_name = 'test_{0}_{1}_train'.format('cuda' if use_cuda else 'cpu', 'sparse'
                                         if is_sparse else 'dense')

    def f(*args):
        with scope_prog_guard():
            train_main(use_cuda, is_sparse)

    setattr(TestMachineTranslation, f_name, f)


def inject_test_decode(use_cuda, is_sparse, decorator=None):
    f_name = 'test_{0}_{1}_decode'.format('cuda'
                                          if use_cuda else 'cpu', 'sparse'
                                          if is_sparse else 'dense')

    def f(*args):
        with scope_prog_guard():
            decode_main(use_cuda, is_sparse)

    if decorator is not None:
        f = decorator(f)

    setattr(TestMachineTranslation, f_name, f)


for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):
        inject_test_train(_use_cuda_, _is_sparse_)

for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):

        _decorator_ = None
        if _use_cuda_:
            _decorator_ = unittest.skip(
                reason='Beam Search does not support CUDA!')

        inject_test_decode(
            is_sparse=_is_sparse_, use_cuda=_use_cuda_, decorator=_decorator_)

Y
Yan Chunwei 已提交
344
if __name__ == '__main__':
Y
Yang Yu 已提交
345
    unittest.main()