ut_helper.h 6.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

22 23 24
#include <string>
#include <vector>

Y
Yan Chunwei 已提交
25 26 27 28 29
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
30
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
31 32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
42
  std::uniform_real_distribution<double> dist(low, high);
Y
Yan Chunwei 已提交
43 44 45 46 47 48 49 50 51
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);
  auto* data = tensor->mutable_data<float>(place);
52

Y
Yan Chunwei 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65
  for (size_t i = 0; i < num_elements; i++) {
    *(data + i) = random(0., 1.);
  }
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

66
  TRTConvertValidation(int max_batch_size,
67
                       const std::unordered_set<std::string>& parameters,
G
gongweibao 已提交
68
                       framework::Scope& scope,  // NOLINT
N
nhzlx 已提交
69
                       int workspace_size = 1 << 10, bool if_add_batch = true)
70 71
      : parameters_(parameters),
        scope_(scope),
N
nhzlx 已提交
72 73
        if_add_batch_(if_add_batch),
        max_batch_size_(max_batch_size) {
Y
Yan Chunwei 已提交
74
    // create engine.
75
    engine_.reset(new TensorRTEngine(max_batch_size, workspace_size, &stream_));
Y
Yan Chunwei 已提交
76 77 78 79 80 81
    engine_->InitNetwork();

    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
  }

  // Declare a Variable as input with random initialization.
N
nhzlx 已提交
82 83 84 85 86 87
  void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
                    const nvinfer1::Dims& trt_dims) {
    DeclVar(name, tensor_dims);
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
  }

Y
Yan Chunwei 已提交
88 89 90 91 92 93
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

94 95
  // Declare a parameter varaible in the scope.
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
96
    DeclVar(name, dims, true);
97 98
  }

Y
Yan Chunwei 已提交
99 100 101 102
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

N
nhzlx 已提交
103
  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
Y
Yan Chunwei 已提交
104 105 106
    platform::CPUPlace place;
    platform::CPUDeviceContext ctx(place);

N
nhzlx 已提交
107 108 109 110 111 112 113 114
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place, ctx);
  }
  // Declare a variable in a fluid Scope.
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
               bool is_param = false) {
Y
Yan Chunwei 已提交
115
    // Init Fluid tensor.
116
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
117
    // There is no batchsize in ITensor's shape, but We should add it to
N
nhzlx 已提交
118 119 120 121
    // tensor's shape of fluid. If the variable is not parameter and the
    // if_add_batch_ flag is true, add the max batchsize to dim_vec.
    if (is_param != true && if_add_batch_ == true)
      dim_vec.insert(dim_vec.begin(), max_batch_size_);
N
nhzlx 已提交
122 123

    DeclVar(name, dim_vec);
Y
Yan Chunwei 已提交
124 125 126 127 128
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

129 130
    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
Y
Yan Chunwei 已提交
131 132 133 134

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
135
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
136 137 138

    // Set Inputs.
    for (const auto& input : op_desc_->InputArgumentNames()) {
139
      if (parameters_.count(input)) continue;
Y
Yan Chunwei 已提交
140 141 142
      auto* var = scope_.FindVar(input);
      PADDLE_ENFORCE(var);
      auto tensor = var->GetMutable<framework::LoDTensor>();
143

Y
Yan Chunwei 已提交
144
      engine_->SetInputFromCPU(
145
          input, static_cast<void*>(tensor->data<void>()),
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152
          sizeof(float) *
              analysis::AccuDims(tensor->dims(), tensor->dims().size()));
    }
  }

  void Execute(int batch_size) {
    // Execute Fluid Op
N
nhzlx 已提交
153
    PADDLE_ENFORCE_LE(batch_size, max_batch_size_);
Y
Yan Chunwei 已提交
154 155 156
    platform::CPUPlace place;
    platform::CPUDeviceContext ctx(place);
    op_->Run(scope_, place);
157 158 159
    // Execute TRT.
    engine_->Execute(batch_size);
    cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
160 161

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
N
nhzlx 已提交
162
    const size_t output_space_size = 3000;
Y
Yan Chunwei 已提交
163 164
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      std::vector<float> fluid_out;
165
      std::vector<float> trt_out(output_space_size);
N
nhzlx 已提交
166
      engine_->GetOutputInCPU(output, &trt_out[0], output_space_size);
167
      cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
168 169 170 171

      auto* var = scope_.FindVar(output);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
N
nhzlx 已提交
172 173 174

      size_t fluid_out_size = fluid_out.size();
      if (if_add_batch_ == true) {
N
nhzlx 已提交
175 176
        fluid_out_size =
            batch_size * (framework::product(tensor->dims()) / max_batch_size_);
N
nhzlx 已提交
177
      }
Y
Yan Chunwei 已提交
178 179
      // Compare two output
      ASSERT_FALSE(fluid_out.empty());
N
nhzlx 已提交
180
      for (size_t i = 0; i < fluid_out_size; i++) {
181 182
        // Loose the threshold for CI in different machine model.
        EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 2e-5);
Y
Yan Chunwei 已提交
183 184 185 186 187 188 189 190 191 192 193
      }
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
194 195
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
N
nhzlx 已提交
196 197 198 199 200 201
  // The ITensor of trt does not cotain the batch size,
  // bug, in most cases, we need to set batch size for
  // fluid's tensor shape. This variable indicates
  // whether to add batch size to tensor shape of fluid.
  bool if_add_batch_;
  int max_batch_size_;
Y
Yan Chunwei 已提交
202 203 204 205 206
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle