use_concepts_cn.html 38.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>基本使用概念 &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/>
        <link rel="up" title="新手入门" href="../index_cn.html"/>
        <link rel="next" title="进阶指南" href="../../howto/index_cn.html"/>
38
        <link rel="prev" title="从源码编译" href="../build_and_install/build_from_source_cn.html"/> 
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1 current"><a class="reference internal" href="../index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
91
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_cn.html">MOBILE</a></li>
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1 current"><a class="reference internal" href="../index_cn.html">新手入门</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a><ul>
115 116
<li class="toctree-l3"><a class="reference internal" href="../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l3"><a class="reference internal" href="../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
117
<li class="toctree-l3"><a class="reference internal" href="../../howto/dev/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
118
<li class="toctree-l3"><a class="reference internal" href="../build_and_install/build_from_source_cn.html">从源码编译</a></li>
119 120 121 122 123 124 125 126 127 128 129 130
</ul>
</li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
131 132 133 134 135 136
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/fabric_cn.html">fabric集群</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/openmpi_cn.html">openmpi集群</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_cn.html">kubernetes单机</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_distributed_cn.html">kubernetes distributed分布式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_aws_cn.html">AWS上运行kubernetes集群训练</a></li>
137 138
</ul>
</li>
139
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
140 141
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
142
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
162 163 164 165 166 167
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
168
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
169 170 171 172 173 174 175 176 177 178 179 180 181
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
182 183
</ul>
</li>
184 185 186 187 188 189 190 191
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
192
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_cn.html">MOBILE</a><ul>
193 194 195
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_android_cn.html">Android平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_ios_cn.html">iOS平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_raspberry_cn.html">Raspberry Pi平台编译指南</a></li>
196 197
</ul>
</li>
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../index_cn.html">新手入门</a> > </li>
      
    <li>基本使用概念</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="id1">
<h1>基本使用概念<a class="headerlink" href="#id1" title="永久链接至标题"></a></h1>
<p>PaddlePaddle是源于百度的一个深度学习平台。PaddlePaddle为深度学习研究人员提供了丰富的API,可以轻松地完成神经网络配置,模型训练等任务。
这里将介绍PaddlePaddle的基本使用概念,并且展示了如何利用PaddlePaddle来解决一个经典的线性回归问题。
在使用该文档之前,请参考 <a class="reference external" href="../build_and_install/index_cn.html">安装文档</a> 完成PaddlePaddle的安装。</p>
<div class="section" id="id3">
<h2>配置网络<a class="headerlink" href="#id3" title="永久链接至标题"></a></h2>
<div class="section" id="paddlepaddle">
<h3>加载PaddlePaddle<a class="headerlink" href="#paddlepaddle" title="永久链接至标题"></a></h3>
<p>在进行网络配置之前,首先需要加载相应的Python库,并进行初始化操作。</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>import paddle.v2 as paddle
import numpy as np
paddle.init<span class="o">(</span><span class="nv">use_gpu</span><span class="o">=</span>False<span class="o">)</span>
</pre></div>
</div>
</div>
<div class="section" id="id4">
<h3>搭建神经网络<a class="headerlink" href="#id4" title="永久链接至标题"></a></h3>
<p>搭建神经网络就像使用积木搭建宝塔一样。在PaddlePaddle中,layer是我们的积木,而神经网络是我们要搭建的宝塔。我们使用不同的layer进行组合,来搭建神经网络。
宝塔的底端需要坚实的基座来支撑,同样,神经网络也需要一些特定的layer作为输入接口,来完成网络的训练。</p>
<p>例如,我们可以定义如下layer来描述神经网络的输入:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">x</span> <span class="o">=</span> paddle.layer.data<span class="o">(</span><span class="nv">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span>, <span class="nv">type</span><span class="o">=</span>paddle.data_type.dense_vector<span class="o">(</span><span class="m">2</span><span class="o">))</span>
<span class="nv">y</span> <span class="o">=</span> paddle.layer.data<span class="o">(</span><span class="nv">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span>, <span class="nv">type</span><span class="o">=</span>paddle.data_type.dense_vector<span class="o">(</span><span class="m">1</span><span class="o">))</span>
</pre></div>
</div>
<p>其中x表示输入数据是一个维度为2的稠密向量,y表示输入数据是一个维度为1的稠密向量。</p>
<p>PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和三种序列模式。</p>
<p>四种数据类型:</p>
<ul class="simple">
<li>dense_vector:稠密的浮点数向量。</li>
<li>sparse_binary_vector:稀疏的01向量,即大部分值为0,但有值的地方必须为1。</li>
<li>sparse_float_vector:稀疏的向量,即大部分值为0,但有值的部分可以是任何浮点数。</li>
<li>integer:整数标签。</li>
</ul>
<p>三种序列模式:</p>
<ul class="simple">
<li>SequenceType.NO_SEQUENCE:不是一条序列</li>
<li>SequenceType.SEQUENCE:是一条时间序列</li>
<li>SequenceType.SUB_SEQUENCE: 是一条时间序列,且序列的每一个元素还是一个时间序列。</li>
</ul>
<p>不同的数据类型和序列模式返回的格式不同,列表如下:</p>
<table border="1" class="docutils">
<colgroup>
<col width="17%" />
<col width="17%" />
<col width="28%" />
<col width="38%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">&#160;</th>
<th class="head">NO_SEQUENCE</th>
<th class="head">SEQUENCE</th>
<th class="head">SUB_SEQUENCE</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>dense_vector</td>
<td>[f, f, ...]</td>
<td>[[f, ...], [f, ...], ...]</td>
<td>[[[f, ...], ...], [[f, ...], ...],...]</td>
</tr>
<tr class="row-odd"><td>sparse_binary_vector</td>
<td>[i, i, ...]</td>
<td>[[i, ...], [i, ...], ...]</td>
<td>[[[i, ...], ...], [[i, ...], ...],...]</td>
</tr>
<tr class="row-even"><td>sparse_float_vector</td>
<td>[(i,f), (i,f), ...]</td>
<td>[[(i,f), ...], [(i,f), ...], ...]</td>
<td>[[[(i,f), ...], ...], [[(i,f), ...], ...],...]</td>
</tr>
<tr class="row-odd"><td>integer_value</td>
<td>i</td>
<td>[i, i, ...]</td>
<td>[[i, ...], [i, ...], ...]</td>
</tr>
</tbody>
</table>
<p>其中,f代表一个浮点数,i代表一个整数。</p>
<p>注意:对sparse_binary_vector和sparse_float_vector,PaddlePaddle存的是有值位置的索引。例如,</p>
<ul class="simple">
<li>对一个5维非序列的稀疏01向量 <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">1,</span> <span class="pre">1,</span> <span class="pre">0,</span> <span class="pre">0]</span></code> ,类型是sparse_binary_vector,返回的是 <code class="docutils literal"><span class="pre">[1,</span> <span class="pre">2]</span></code></li>
<li>对一个5维非序列的稀疏浮点向量 <code class="docutils literal"><span class="pre">[0,</span> <span class="pre">0.5,</span> <span class="pre">0.7,</span> <span class="pre">0,</span> <span class="pre">0]</span></code> ,类型是sparse_float_vector,返回的是 <code class="docutils literal"><span class="pre">[(1,</span> <span class="pre">0.5),</span> <span class="pre">(2,</span> <span class="pre">0.7)]</span></code></li>
</ul>
<p>在定义输入layer之后,我们可以使用其他layer进行组合。在组合时,需要指定layer的输入来源。</p>
<p>例如,我们可以定义如下的layer组合:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">y_predict</span> <span class="o">=</span> paddle.layer.fc<span class="o">(</span><span class="nv">input</span><span class="o">=</span>x, <span class="nv">size</span><span class="o">=</span><span class="m">1</span>, <span class="nv">act</span><span class="o">=</span>paddle.activation.Linear<span class="o">())</span>
316
<span class="nv">cost</span> <span class="o">=</span> paddle.layer.square_error_cost<span class="o">(</span><span class="nv">input</span><span class="o">=</span>y_predict, <span class="nv">label</span><span class="o">=</span>y<span class="o">)</span>
317 318
</pre></div>
</div>
319
<p>其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上平方误差层。</p>
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
<p>最后一层cost中记录了神经网络的所有拓扑结构,通过组合不同的layer,我们即可完成神经网络的搭建。</p>
</div>
</div>
<div class="section" id="id5">
<h2>训练模型<a class="headerlink" href="#id5" title="永久链接至标题"></a></h2>
<p>在完成神经网络的搭建之后,我们首先需要根据神经网络结构来创建所需要优化的parameters,并创建optimizer。
之后,我们可以创建trainer来对网络进行训练。</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">parameters</span> <span class="o">=</span> paddle.parameters.create<span class="o">(</span>cost<span class="o">)</span>
<span class="nv">optimizer</span> <span class="o">=</span> paddle.optimizer.Momentum<span class="o">(</span><span class="nv">momentum</span><span class="o">=</span><span class="m">0</span><span class="o">)</span>
<span class="nv">trainer</span> <span class="o">=</span> paddle.trainer.SGD<span class="o">(</span><span class="nv">cost</span><span class="o">=</span>cost,
                             <span class="nv">parameters</span><span class="o">=</span>parameters,
                             <span class="nv">update_equation</span><span class="o">=</span>optimizer<span class="o">)</span>
</pre></div>
</div>
<p>其中,trainer接收三个参数,包括神经网络拓扑结构、神经网络参数以及迭代方程。</p>
<p>在搭建神经网络的过程中,我们仅仅对神经网络的输入进行了描述。而trainer需要读取训练数据进行训练,PaddlePaddle中通过reader来加载数据。</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="c1"># define training dataset reader</span>
def train_reader<span class="o">()</span>:
    <span class="nv">train_x</span> <span class="o">=</span> np.array<span class="o">([[</span><span class="m">1</span>, <span class="m">1</span><span class="o">]</span>, <span class="o">[</span><span class="m">1</span>, <span class="m">2</span><span class="o">]</span>, <span class="o">[</span><span class="m">3</span>, <span class="m">4</span><span class="o">]</span>, <span class="o">[</span><span class="m">5</span>, <span class="m">2</span><span class="o">]])</span>
339
    <span class="nv">train_y</span> <span class="o">=</span> np.array<span class="o">([[</span>-2<span class="o">]</span>, <span class="o">[</span>-3<span class="o">]</span>, <span class="o">[</span>-7<span class="o">]</span>, <span class="o">[</span>-7<span class="o">]])</span>
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    def reader<span class="o">()</span>:
        <span class="k">for</span> i in xrange<span class="o">(</span>train_y.shape<span class="o">[</span><span class="m">0</span><span class="o">])</span>:
            yield train_x<span class="o">[</span>i<span class="o">]</span>, train_y<span class="o">[</span>i<span class="o">]</span>
    <span class="k">return</span> reader
</pre></div>
</div>
<p>最终我们可以调用trainer的train方法启动训练:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="c1"># define feeding map</span>
<span class="nv">feeding</span> <span class="o">=</span> <span class="o">{</span><span class="s1">&#39;x&#39;</span>: <span class="m">0</span>, <span class="s1">&#39;y&#39;</span>: <span class="m">1</span><span class="o">}</span>

<span class="c1"># event_handler to print training info</span>
def event_handler<span class="o">(</span>event<span class="o">)</span>:
    <span class="k">if</span> isinstance<span class="o">(</span>event, paddle.event.EndIteration<span class="o">)</span>:
        <span class="k">if</span> event.batch_id % <span class="nv">1</span> <span class="o">==</span> <span class="m">0</span>:
            print <span class="s2">&quot;Pass %d, Batch %d, Cost %f&quot;</span> % <span class="o">(</span>
                event.pass_id, event.batch_id, event.cost<span class="o">)</span>
<span class="c1"># training</span>
trainer.train<span class="o">(</span>
    <span class="nv">reader</span><span class="o">=</span>paddle.batch<span class="o">(</span>train_reader<span class="o">()</span>, <span class="nv">batch_size</span><span class="o">=</span><span class="m">1</span><span class="o">)</span>,
    <span class="nv">feeding</span><span class="o">=</span>feeding,
    <span class="nv">event_handler</span><span class="o">=</span>event_handler,
    <span class="nv">num_passes</span><span class="o">=</span><span class="m">100</span><span class="o">)</span>
</pre></div>
</div>
<p>关于PaddlePaddle的更多使用方法请参考 <a class="reference external" href="../../howto/index_cn.html">进阶指南</a></p>
</div>
<div class="section" id="id7">
<h2>线性回归完整示例<a class="headerlink" href="#id7" title="永久链接至标题"></a></h2>
<p>下面给出在三维空间中使用线性回归拟合一条直线的例子:</p>
<div class="highlight-default"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
420 421 422 423 424 425
52
53
54
55
56
57</pre></div></td><td class="code"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.v2</span> <span class="k">as</span> <span class="nn">paddle</span>
426 427 428 429 430 431 432 433 434
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>

<span class="c1"># init paddle</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">use_gpu</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>

<span class="c1"># network config</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">dense_vector</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span>
<span class="n">y_predict</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Linear</span><span class="p">())</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">dense_vector</span><span class="p">(</span><span class="mi">1</span><span class="p">))</span>
435
<span class="n">cost</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">square_error_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">y_predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

<span class="c1"># create parameters</span>
<span class="n">parameters</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">parameters</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">cost</span><span class="p">)</span>
<span class="c1"># create optimizer</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">Momentum</span><span class="p">(</span><span class="n">momentum</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="c1"># create trainer</span>
<span class="n">trainer</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">trainer</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">cost</span><span class="o">=</span><span class="n">cost</span><span class="p">,</span>
                             <span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span>
                             <span class="n">update_equation</span><span class="o">=</span><span class="n">optimizer</span><span class="p">)</span>


<span class="c1"># event_handler to print training info</span>
<span class="k">def</span> <span class="nf">event_handler</span><span class="p">(</span><span class="n">event</span><span class="p">):</span>
    <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">event</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">event</span><span class="o">.</span><span class="n">EndIteration</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">event</span><span class="o">.</span><span class="n">batch_id</span> <span class="o">%</span> <span class="mi">1</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
            <span class="nb">print</span> <span class="s2">&quot;Pass </span><span class="si">%d</span><span class="s2">, Batch </span><span class="si">%d</span><span class="s2">, Cost </span><span class="si">%f</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">event</span><span class="o">.</span><span class="n">pass_id</span><span class="p">,</span> <span class="n">event</span><span class="o">.</span><span class="n">batch_id</span><span class="p">,</span>
                                                  <span class="n">event</span><span class="o">.</span><span class="n">cost</span><span class="p">)</span>
453 454 455 456 457
    <span class="c1"># product model every 10 pass</span>
    <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">event</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">event</span><span class="o">.</span><span class="n">EndPass</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">event</span><span class="o">.</span><span class="n">pass_id</span> <span class="o">%</span> <span class="mi">10</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
            <span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s1">&#39;params_pass_</span><span class="si">%d</span><span class="s1">.tar&#39;</span> <span class="o">%</span> <span class="n">event</span><span class="o">.</span><span class="n">pass_id</span><span class="p">,</span> <span class="s1">&#39;w&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
                <span class="n">trainer</span><span class="o">.</span><span class="n">save_parameter_to_tar</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
458 459 460 461 462


<span class="c1"># define training dataset reader</span>
<span class="k">def</span> <span class="nf">train_reader</span><span class="p">():</span>
    <span class="n">train_x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">2</span><span class="p">]])</span>
463
    <span class="n">train_y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="o">-</span><span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">7</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">7</span><span class="p">]])</span>
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">xrange</span><span class="p">(</span><span class="n">train_y</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]):</span>
            <span class="k">yield</span> <span class="n">train_x</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">train_y</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>

    <span class="k">return</span> <span class="n">reader</span>


<span class="c1"># define feeding map</span>
<span class="n">feeding</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="s1">&#39;y&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">}</span>

<span class="c1"># training</span>
<span class="n">trainer</span><span class="o">.</span><span class="n">train</span><span class="p">(</span>
    <span class="n">reader</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span>
        <span class="n">train_reader</span><span class="p">(),</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
    <span class="n">feeding</span><span class="o">=</span><span class="n">feeding</span><span class="p">,</span>
    <span class="n">event_handler</span><span class="o">=</span><span class="n">event_handler</span><span class="p">,</span>
    <span class="n">num_passes</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
</pre></div>
</td></tr></table></div>
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
<p>使用以上训练好的模型进行预测,取其中一个模型params_pass_90.tar,输入需要预测的向量组,然后打印输出:</p>
<div class="highlight-default"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18</pre></div></td><td class="code"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.v2</span> <span class="k">as</span> <span class="nn">paddle</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>

<span class="n">paddle</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">use_gpu</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">dense_vector</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span>
<span class="n">y_predict</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Linear</span><span class="p">())</span>

<span class="c1"># loading the model which generated by training</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s1">&#39;params_pass_90.tar&#39;</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
    <span class="n">parameters</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">parameters</span><span class="o">.</span><span class="n">Parameters</span><span class="o">.</span><span class="n">from_tar</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>

<span class="c1"># Input multiple sets of data,Output the infer result in a array.</span>
<span class="n">i</span> <span class="o">=</span> <span class="p">[[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">]],</span> <span class="p">[[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]],</span> <span class="p">[[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]]]</span>
<span class="nb">print</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="n">y_predict</span><span class="p">,</span> <span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span> <span class="nb">input</span><span class="o">=</span><span class="n">i</span><span class="p">)</span>
<span class="c1"># Will print:</span>
<span class="c1"># [[ -3.24491572]</span>
<span class="c1">#  [ -6.94668722]</span>
<span class="c1">#  [-10.64845848]]</span>
</pre></div>
</td></tr></table></div>
522 523 524 525 526 527 528 529 530 531 532 533 534 535
<p>有关线性回归的实际应用,可以参考PaddlePaddle book的 <a class="reference external" href="http://book.paddlepaddle.org/index.html">第一章节</a></p>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="../../howto/index_cn.html" class="btn btn-neutral float-right" title="进阶指南" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
536
        <a href="../build_and_install/build_from_source_cn.html" class="btn btn-neutral" title="从源码编译" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>