Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b03aadf1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b03aadf1
编写于
12月 15, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
d5cab4f0
上级
6dbcdf91
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
55 addition
and
2 deletion
+55
-2
develop/doc_cn/_sources/getstarted/concepts/use_concepts_cn.rst.txt
...c_cn/_sources/getstarted/concepts/use_concepts_cn.rst.txt
+5
-0
develop/doc_cn/getstarted/concepts/use_concepts_cn.html
develop/doc_cn/getstarted/concepts/use_concepts_cn.html
+49
-1
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc_cn/_sources/getstarted/concepts/use_concepts_cn.rst.txt
浏览文件 @
b03aadf1
...
...
@@ -147,4 +147,9 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和
.. literalinclude:: src/train.py
:linenos:
使用以上训练好的模型进行预测,取其中一个模型params_pass_90.tar,输入需要预测的向量组,然后打印输出:
.. literalinclude:: src/infer.py
:linenos:
有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 <http://book.paddlepaddle.org/index.html>`_。
develop/doc_cn/getstarted/concepts/use_concepts_cn.html
浏览文件 @
b03aadf1
...
...
@@ -400,7 +400,12 @@ trainer.train<span class="o">(</span>
49
50
51
52
</pre></div></td><td
class=
"code"
><div
class=
"highlight"
><pre><span></span><span
class=
"kn"
>
import
</span>
<span
class=
"nn"
>
paddle.v2
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"nn"
>
paddle
</span>
52
53
54
55
56
57
</pre></div></td><td
class=
"code"
><div
class=
"highlight"
><pre><span></span><span
class=
"kn"
>
import
</span>
<span
class=
"nn"
>
paddle.v2
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"nn"
>
paddle
</span>
<span
class=
"kn"
>
import
</span>
<span
class=
"nn"
>
numpy
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"nn"
>
np
</span>
<span
class=
"c1"
>
# init paddle
</span>
...
...
@@ -428,6 +433,11 @@ trainer.train<span class="o">(</span>
<span
class=
"k"
>
if
</span>
<span
class=
"n"
>
event
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
batch_id
</span>
<span
class=
"o"
>
%
</span>
<span
class=
"mi"
>
1
</span>
<span
class=
"o"
>
==
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
:
</span>
<span
class=
"nb"
>
print
</span>
<span
class=
"s2"
>
"
Pass
</span><span
class=
"si"
>
%d
</span><span
class=
"s2"
>
, Batch
</span><span
class=
"si"
>
%d
</span><span
class=
"s2"
>
, Cost
</span><span
class=
"si"
>
%f
</span><span
class=
"s2"
>
"
</span>
<span
class=
"o"
>
%
</span>
<span
class=
"p"
>
(
</span><span
class=
"n"
>
event
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
pass_id
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
event
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
batch_id
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
event
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
cost
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# product model every 10 pass
</span>
<span
class=
"k"
>
if
</span>
<span
class=
"nb"
>
isinstance
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
event
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
event
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
EndPass
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
if
</span>
<span
class=
"n"
>
event
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
pass_id
</span>
<span
class=
"o"
>
%
</span>
<span
class=
"mi"
>
10
</span>
<span
class=
"o"
>
==
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
:
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"nb"
>
open
</span><span
class=
"p"
>
(
</span><span
class=
"s1"
>
'
params_pass_
</span><span
class=
"si"
>
%d
</span><span
class=
"s1"
>
.tar
'
</span>
<span
class=
"o"
>
%
</span>
<span
class=
"n"
>
event
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
pass_id
</span><span
class=
"p"
>
,
</span>
<span
class=
"s1"
>
'
w
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"n"
>
f
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
trainer
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
save_parameter_to_tar
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
f
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# define training dataset reader
</span>
...
...
@@ -454,6 +464,44 @@ trainer.train<span class="o">(</span>
<span
class=
"n"
>
num_passes
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
100
</span><span
class=
"p"
>
)
</span>
</pre></div>
</td></tr></table></div>
<p>
使用以上训练好的模型进行预测,取其中一个模型params_pass_90.tar,输入需要预测的向量组,然后打印输出:
</p>
<div
class=
"highlight-default"
><table
class=
"highlighttable"
><tr><td
class=
"linenos"
><div
class=
"linenodiv"
><pre>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
</pre></div></td><td
class=
"code"
><div
class=
"highlight"
><pre><span></span><span
class=
"kn"
>
import
</span>
<span
class=
"nn"
>
paddle.v2
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"nn"
>
paddle
</span>
<span
class=
"kn"
>
import
</span>
<span
class=
"nn"
>
numpy
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"nn"
>
np
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
init
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
use_gpu
</span><span
class=
"o"
>
=
</span><span
class=
"kc"
>
False
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
x
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layer
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
x
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
type
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data_type
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
dense_vector
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
))
</span>
<span
class=
"n"
>
y_predict
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layer
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
fc
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
activation
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
Linear
</span><span
class=
"p"
>
())
</span>
<span
class=
"c1"
>
# loading the model which generated by training
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"nb"
>
open
</span><span
class=
"p"
>
(
</span><span
class=
"s1"
>
'
params_pass_90.tar
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"s1"
>
'
r
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"n"
>
f
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
parameters
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
parameters
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
Parameters
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
from_tar
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
f
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# Input multiple sets of data,Output the infer result in a array.
</span>
<span
class=
"n"
>
i
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[[[
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
]],
</span>
<span
class=
"p"
>
[[
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
4
</span><span
class=
"p"
>
]],
</span>
<span
class=
"p"
>
[[
</span><span
class=
"mi"
>
5
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
6
</span><span
class=
"p"
>
]]]
</span>
<span
class=
"nb"
>
print
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
infer
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
output_layer
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
y_predict
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameters
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
parameters
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# Will print:
</span>
<span
class=
"c1"
>
# [[ -3.24491572]
</span>
<span
class=
"c1"
>
# [ -6.94668722]
</span>
<span
class=
"c1"
>
# [-10.64845848]]
</span>
</pre></div>
</td></tr></table></div>
<p>
有关线性回归的实际应用,可以参考PaddlePaddle book的
<a
class=
"reference external"
href=
"http://book.paddlepaddle.org/index.html"
>
第一章节
</a>
。
</p>
</div>
</div>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
b03aadf1
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录