roll_op.cu 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

1
123malin 已提交
15
#pragma once
S
sunli 已提交
16
#include "paddle/fluid/framework/array.h"
1
123malin 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/operators/roll_op.h"
19
#include "paddle/fluid/platform/complex.h"
1
123malin 已提交
20 21 22 23 24 25 26 27 28
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using platform::PADDLE_CUDA_NUM_THREADS;
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

S
sunli 已提交
29 30 31 32 33
template <typename T, size_t Rank>
__global__ void RollCudaKernel(const T* input, T* output, int64_t N,
                               paddle::framework::Array<int64_t, Rank> shifts,
                               paddle::framework::Array<int64_t, Rank> strides,
                               paddle::framework::Array<int64_t, Rank> sizes) {
1
123malin 已提交
34 35 36 37
  int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= N) {
    return;
  }
S
sunli 已提交
38

1
123malin 已提交
39
  int64_t output_idx = idx;
40
  int64_t new_dim_idx = 0;
S
sunli 已提交
41

42
#pragma unroll
S
sunli 已提交
43
  for (size_t i = 0; i < Rank; i++) {
44 45 46 47 48 49
    new_dim_idx = (idx / strides[i]) % sizes[i] + shifts[i];
    if (new_dim_idx >= sizes[i]) {
      output_idx += (shifts[i] - sizes[i]) * strides[i];
    } else {
      output_idx += shifts[i] * strides[i];
    }
1
123malin 已提交
50 51 52 53
  }
  output[output_idx] = input[idx];
}

S
sunli 已提交
54 55 56
template <typename T>
class RollKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
1
123malin 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
    std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("axis");

    auto* in_data = in->data<T>();
    auto* out_data = out->mutable_data<T>(context.GetPlace());
    int64_t numel = in->numel();
    auto stream =
        context.template device_context<platform::CUDADeviceContext>().stream();

    size_t nums = shifts.size();
    auto input_dim = in->dims();
    auto stride_dim = framework::stride(input_dim);

S
sunli 已提交
74 75 76 77 78 79 80 81 82 83
    std::vector<int64_t> strides(nums), sizes(nums);
    if (dims.size() == 0) {
      strides[0] = 1;
      sizes[0] = numel;
      shifts[0] = (shifts[0] % numel + numel) % numel;
    } else {
      for (size_t i = 0; i < nums; i++) {
        int dim = dims[i] >= 0 ? dims[i] : dims[i] + input_dim.size();
        int64_t size = input_dim[dim];

84 85 86 87 88
        if (size != 0) {
          shifts[i] = (shifts[i] % size + size) % size;
          strides[i] = stride_dim[dim];
          sizes[i] = size;
        }
S
sunli 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
      }
    }

#define CALL_ROLL_CUDA_KERNEL(N)                                               \
  case N: {                                                                    \
    paddle::framework::Array<int64_t, N> _strides;                             \
    paddle::framework::Array<int64_t, N> _shifts;                              \
    paddle::framework::Array<int64_t, N> _sizes;                               \
    for (size_t idx = 0; idx < N; ++idx) {                                     \
      _strides[idx] = strides[idx];                                            \
      _shifts[idx] = shifts[idx];                                              \
      _sizes[idx] = sizes[idx];                                                \
    }                                                                          \
    RollCudaKernel<                                                            \
        T,                                                                     \
        N><<<(numel + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS,  \
             PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_data, out_data, numel,   \
                                                   _shifts, _strides, _sizes); \
    break;                                                                     \
  }

    switch (nums) {
      CALL_ROLL_CUDA_KERNEL(1);
      CALL_ROLL_CUDA_KERNEL(2);
      CALL_ROLL_CUDA_KERNEL(3);
      CALL_ROLL_CUDA_KERNEL(4);
      CALL_ROLL_CUDA_KERNEL(5);
      CALL_ROLL_CUDA_KERNEL(6);
      CALL_ROLL_CUDA_KERNEL(7);
      CALL_ROLL_CUDA_KERNEL(8);
      CALL_ROLL_CUDA_KERNEL(9);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "shifts.size() should be less than 10, But received shifts.size() "
            "= %d",
            shifts.size()));
1
123malin 已提交
125 126 127 128
    }
  }
};

S
sunli 已提交
129 130 131
template <typename T>
class RollGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
1
123malin 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* out = context.Output<LoDTensor>(framework::GradVarName("X"));
    std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
    std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("axis");

    auto* in_data = in->data<T>();
    auto* out_data = out->mutable_data<T>(context.GetPlace());
    int64_t numel = in->numel();
    auto stream =
        context.template device_context<platform::CUDADeviceContext>().stream();
    size_t nums = shifts.size();
    auto input_dim = in->dims();
    auto stride_dim = framework::stride(input_dim);

S
sunli 已提交
148 149 150 151 152 153 154 155 156
    std::vector<int64_t> strides(nums), sizes(nums);
    if (dims.size() == 0) {
      strides[0] = 1;
      sizes[0] = numel;
      shifts[0] = ((-shifts[0]) % numel + numel) % numel;
    } else {
      for (size_t i = 0; i < nums; i++) {
        int dim = dims[i] >= 0 ? dims[i] : dims[i] + input_dim.size();
        int64_t size = input_dim[dim];
157 158 159 160 161
        if (size != 0) {
          shifts[i] = ((-shifts[i]) % size + size) % size;
          strides[i] = stride_dim[dim];
          sizes[i] = size;
        }
S
sunli 已提交
162
      }
1
123malin 已提交
163 164
    }

S
sunli 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    switch (nums) {
      CALL_ROLL_CUDA_KERNEL(1);
      CALL_ROLL_CUDA_KERNEL(2);
      CALL_ROLL_CUDA_KERNEL(3);
      CALL_ROLL_CUDA_KERNEL(4);
      CALL_ROLL_CUDA_KERNEL(5);
      CALL_ROLL_CUDA_KERNEL(6);
      CALL_ROLL_CUDA_KERNEL(7);
      CALL_ROLL_CUDA_KERNEL(8);
      CALL_ROLL_CUDA_KERNEL(9);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "shifts.size() should be less than 10, But received shifts.size() "
            "= %d",
            shifts.size()));
    }
1
123malin 已提交
181 182 183 184 185
  }
};

}  // namespace operators
}  // namespace paddle
186 187 188

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
S
sunli 已提交
189 190 191
    roll, ops::RollKernel<paddle::platform::CUDADeviceContext, float>,
    ops::RollKernel<paddle::platform::CUDADeviceContext, double>,
    ops::RollKernel<paddle::platform::CUDADeviceContext, int>,
192 193 194 195 196
    ops::RollKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::RollKernel<paddle::platform::CUDADeviceContext,
                    paddle::platform::complex<float>>,
    ops::RollKernel<paddle::platform::CUDADeviceContext,
                    paddle::platform::complex<double>>);
197
REGISTER_OP_CUDA_KERNEL(
S
sunli 已提交
198 199 200
    roll_grad, ops::RollGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::RollGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::RollGradKernel<paddle::platform::CUDADeviceContext, int>,
201 202 203 204 205
    ops::RollGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::RollGradKernel<paddle::platform::CUDADeviceContext,
                        paddle::platform::complex<float>>,
    ops::RollGradKernel<paddle::platform::CUDADeviceContext,
                        paddle::platform::complex<double>>);