topology.py 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function
import sys
17 18 19 20 21
import paddle
import collections
import numpy as np
from itertools import product
from functools import reduce
22 23
from ..utils.log_util import logger

24 25
__all__ = ['CommunicateTopology', 'HybridCommunicateGroup']

26 27
_HYBRID_PARALLEL_GROUP = None

28

29
class ParallelMode(object):
Y
Yanxing Shi 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    """
    There are all the parallel modes currently supported:
    - DATA_PARALLEL: Distribute input data to different devices.
    - TENSOR_PARALLEL: Shards tensors in the network to different devices.
    - PIPELINE_PARALLEL: Place different layers of the network on different devices.
    - SHARDING_PARALLEL: Segment the model parameters, parameter gradients and optimizer states 
                         corresponding to the parameters to each device.

    Examples:
        .. code-block:: python

            import paddle
            parallel_mode = paddle.distributed.ParallelMode
            print(parallel_mode.DATA_PARALLEL)  # 0

    """
46
    DATA_PARALLEL = 0
47
    TENSOR_PARALLEL = 1
48
    PIPELINE_PARALLEL = 2
J
JZ-LIANG 已提交
49
    SHARDING_PARALLEL = 3
50 51


52
class CommunicateTopology(object):
53

54
    def __init__(self,
J
JZ-LIANG 已提交
55 56
                 hybrid_group_names=["data", "pipe", "sharding", "model"],
                 dims=[1, 1, 1, 1]):
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        self._parallel_names = hybrid_group_names
        self._dims = dims
        self.coordinate = collections.namedtuple('Coordinate',
                                                 self._parallel_names)
        self._world_size = reduce(lambda x, y: x * y, self._dims)

        ranges = [range(d) for d in self._dims]
        all_coordinate = [self.coordinate(*x) for x in product(*ranges)]

        self._coord2rank = dict(zip(all_coordinate, range(len(all_coordinate))))
        self._rank2coord = dict(
            zip(self._coord2rank.values(), self._coord2rank.keys()))

    def get_hybrid_group_names(self):
        return self._parallel_names

    def get_dim(self, axis_name):
        return self._dims[self._parallel_names.index(axis_name)]

    def world_size(self):
        return self._world_size

    def get_rank(self, **args):
        assert len(args) == len(self._dims)
        key = self.coordinate(**args)
        assert key in self._coord2rank.keys()
        return self._coord2rank[key]

    def get_coord(self, rank):
        assert rank < self._world_size
        assert rank in self._rank2coord.keys()
        return self._rank2coord[rank]

    def get_axis_list(self, axis_name, index):
        axis = self._parallel_names.index(axis_name)
        ranks = [
            self._coord2rank[coord] for coord in self._coord2rank.keys()
            if coord[axis] == index
        ]
        ranks.sort()
        return ranks

    def get_dim_size(self, axis_name):
        assert axis_name in self._parallel_names
        return self._dims[self._parallel_names.index(axis_name)]

    def get_comm_list(self, axis_name):
        assert axis_name in self._parallel_names
        other_axis_names = [
            name for name in self._parallel_names if name != axis_name
        ]

        ranges = []
        for name in other_axis_names:
            dim_num = self.get_dim_size(name)
            ranges.append(range(dim_num))

        all_result = []
        for x in product(*ranges):
            key_coord = {}
            for other_name in other_axis_names:
                key_coord[other_name] = x[other_axis_names.index(other_name)]

            result = []
            for i in range(0, self.get_dim_size(axis_name)):
                key_coord[axis_name] = i
                result.append(self._coord2rank[self.coordinate(**key_coord)])
            all_result.append(result)

        return all_result

128 129 130 131 132
    def get_rank_from_stage(self, global_rank, **kwargs):
        coord = self.get_coord(global_rank)
        tf = coord._replace(**kwargs)._asdict()
        return self.get_rank(**tf)

133 134

class HybridCommunicateGroup(object):
135

136 137 138 139 140
    def __init__(self, topology):
        self.nranks = paddle.distributed.get_world_size()
        self.global_rank = paddle.distributed.get_rank()
        self._topo = topology

141 142 143
        self._dp_degree = self._topo.get_dim('data')
        self._mp_degree = self._topo.get_dim('model')
        self._pp_degree = self._topo.get_dim('pipe')
J
JZ-LIANG 已提交
144
        self._sharding_degree = self._topo.get_dim('sharding')
145 146 147

        self._data_parallel_id = self._get_data_parallel_id()
        self._model_parallel_id = self._get_model_parallel_id()
J
JZ-LIANG 已提交
148
        self._sharding_parallel_id = self._get_sharding_parallel_id()
149
        self.stage_id = self._get_pipe_parallel_id()
150 151

        assert self._check_vaild_topo(
152
        ), "Here is an unreasonable topogy setting. world_size: {}, but" \
J
JZ-LIANG 已提交
153 154
            "mp_num: {}, sharding_num: {}, pp_num: {}, dp_num: {}".format(self.nranks,
            self._mp_degree, self._sharding_degree, self._pp_degree, self._dp_degree)
155 156 157 158 159 160

        # create comm group for data parallel
        self._dp_group, self._dp_comm_group = self._set_comm_group("data")

        # create comm group for model parallel
        self._mp_group, self._mp_comm_group = self._set_comm_group("model")
161

162 163 164
        # create comm group for pipe parallel
        self._pp_group, self._pp_comm_group = self._set_comm_group("pipe")

J
JZ-LIANG 已提交
165 166 167 168
        # create comm group for sharding parallel
        self._sharding_group, self._sharding_comm_group = self._set_comm_group(
            "sharding")

169 170 171 172
        # create global group for check inf_nan / clip global norm
        self._check_group, self._check_comm_group = self._set_check_group(
            "data")

173 174 175 176
        # create p2p group
        self.is_first_stage = (self.stage_id == 0)
        self.is_last_stage = (self.stage_id == (self._pp_degree - 1))

177 178 179 180
        # create p2p_groups
        if self._pp_degree > 1:
            self._set_p2p_group()

J
JZ-LIANG 已提交
181 182 183 184 185 186
        debug_str = "HybridParallelInfo: rank_id: %d, mp_degree: %d, " \
                    "sharding_degree: %d, pp_degree: %d, dp_degree: %d" % (self.global_rank, self._mp_degree,
                    self._sharding_degree, self._pp_degree, self._dp_degree)
        debug_str += ", mp_group: %s,  sharding_group: %s, pp_group: %s, dp_group: %s, check/clip group: %s" % (
            self._mp_group, self._sharding_group, self._pp_group,
            self._dp_group, self._check_group)
187
        logger.info(debug_str)
188 189 190

        global _HYBRID_PARALLEL_GROUP
        _HYBRID_PARALLEL_GROUP = self
191

192
    def get_parallel_mode(self):
J
JZ-LIANG 已提交
193
        # there are four modes : DataParallel / TensorParallel / PipelineParallel / ShardingParallel
194
        # NOTE when sharding conjugates with other parallel, sharding should act like a optimizer and
J
JZ-LIANG 已提交
195 196 197 198 199 200
        # adding its parallel logic within that parallelism
        # when use sharding alone, it should have its own parallelism for its parallel logic
        # TODO modify 3 others parallel to support sharding
        if self._mp_degree == 1 and self._pp_degree == 1 and self._dp_degree == 1 and self._sharding_degree > 1:
            return ParallelMode.SHARDING_PARALLEL
        elif self._mp_degree == 1 and self._pp_degree == 1:
201 202 203
            return ParallelMode.DATA_PARALLEL
        elif self._mp_degree > 1 and self._pp_degree == 1:
            # initialize the seed
204
            return ParallelMode.TENSOR_PARALLEL
205 206 207
        elif self._pp_degree > 1:
            return ParallelMode.PIPELINE_PARALLEL

208
    def _check_vaild_topo(self):
J
JZ-LIANG 已提交
209
        return self._dp_degree * self._mp_degree * self._pp_degree * self._sharding_degree == self.nranks
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

    def _set_comm_group(self, parallel_method="data"):
        parallel_group = []
        parallel_comm_group = None
        parallel_groups = self._topo.get_comm_list(parallel_method)

        for group in parallel_groups:
            comm_group = paddle.distributed.new_group(ranks=group)
            if self.global_rank in group:
                parallel_group = group
                parallel_comm_group = comm_group

        assert len(parallel_group) > 0
        assert parallel_comm_group is not None

        return parallel_group, parallel_comm_group

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    def _set_check_group(self, parallel_method="data"):
        parallel_group = []
        parallel_comm_group = None
        parallel_size = self._topo.get_dim(parallel_method)
        for idx in range(parallel_size):
            parallel_groups = self._topo.get_axis_list(parallel_method, idx)
            comm_group = paddle.distributed.new_group(ranks=parallel_groups)
            if self.global_rank in parallel_groups:
                parallel_group = parallel_groups
                parallel_comm_group = comm_group

        assert len(parallel_group) > 0
        assert parallel_comm_group is not None

        return parallel_group, parallel_comm_group

243 244 245 246 247 248 249 250
    def _get_p2p_next_rank(self):
        assert hasattr(self, 'next_rank'), "next_rank has not been inited"
        return self.next_rank

    def _get_p2p_prev_rank(self):
        assert hasattr(self, 'prev_rank'), "prev_rank has not been inited"
        return self.prev_rank

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    def _set_p2p_group(self):
        comm_lists = self._topo.get_comm_list('pipe')

        self.send_next_group = None
        self.send_prev_group = None
        self.recv_next_group = None
        self.recv_prev_group = None

        for comm_ranks in comm_lists:
            assert len(comm_ranks) == self._pp_degree
            for idx, rank in enumerate(comm_ranks):
                curr_rank = rank
                next_rank = comm_ranks[(idx + 1) % self._pp_degree]
                prev_rank = comm_ranks[(idx - 1) % self._pp_degree]

266 267 268 269
                if self.global_rank == curr_rank:
                    self.next_rank = next_rank
                    self.prev_rank = prev_rank

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
                next_group = paddle.distributed.new_group(
                    ranks=[curr_rank, next_rank])
                if self.global_rank == curr_rank:
                    self.send_next_group = next_group
                elif self.global_rank == next_rank:
                    self.recv_prev_group = next_group

                prev_group = paddle.distributed.new_group(
                    ranks=[prev_rank, curr_rank])

                if self.global_rank == curr_rank:
                    self.send_prev_group = prev_group
                elif self.global_rank == prev_rank:
                    self.recv_next_group = prev_group

        assert self.send_next_group is not None
        assert self.send_prev_group is not None
        assert self.recv_next_group is not None
        assert self.recv_prev_group is not None

290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def topology(self):
        return self._topo

    def get_global_rank(self):
        return self.global_rank

    # data parallel message:
    def _get_data_parallel_id(self):
        return self._topo.get_coord(self.global_rank).data

    def get_data_parallel_rank(self):
        return self._data_parallel_id

    def get_data_parallel_world_size(self):
304
        return self._dp_degree
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

    def get_data_parallel_group(self):
        return self._dp_comm_group

    def get_data_parallel_group_src_rank(self):
        return self._dp_comm_group.ranks[0]

    # model parallel message:
    def _get_model_parallel_id(self):
        return self._topo.get_coord(self.global_rank).model

    def get_model_parallel_rank(self):
        return self._model_parallel_id

    def get_model_parallel_world_size(self):
320
        return self._mp_degree
321 322 323 324 325 326

    def get_model_parallel_group(self):
        return self._mp_comm_group

    def get_model_parallel_group_src_rank(self):
        return self._mp_comm_group.ranks[0]
327

328 329 330 331 332 333 334 335 336 337 338 339 340
    # pipeline parallel message
    def _get_pipe_parallel_id(self):
        return self._topo.get_coord(self.global_rank).pipe

    def get_stage_id(self):
        return self.stage_id

    def get_pipe_parallel_world_size(self):
        return self._pp_degree

    def get_pipe_parallel_group(self):
        return self._pp_comm_group

341 342 343
    def get_p2p_groups(self):
        return self.send_next_group, self.send_prev_group, self.recv_next_group, self.recv_prev_group

J
JZ-LIANG 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    # sharding parallel message:
    def _get_sharding_parallel_id(self):
        return self._topo.get_coord(self.global_rank).sharding

    def get_sharding_parallel_rank(self):
        return self._sharding_parallel_id

    def get_sharding_parallel_world_size(self):
        return self._sharding_degree

    def get_sharding_parallel_group(self):
        return self._sharding_comm_group

    def get_sharding_parallel_group_src_rank(self):
        # TODO should the src rank related to the shard rank for each parameter ?
        return self._sharding_comm_group.ranks[0]

361 362 363
    # check parallel group
    def get_check_parallel_group(self):
        return self._check_comm_group
364

365
    def get_rank_from_stage(self, stage_id, **kwargs):
366 367 368
        return self._topo.get_rank_from_stage(self.global_rank,
                                              pipe=stage_id,
                                              **kwargs)
W
WangXi 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396


class _CommunicateGroup(object):
    """ tmp for static """

    def __init__(self):
        global _HYBRID_PARALLEL_GROUP
        _HYBRID_PARALLEL_GROUP = self
        self.groups = dict()

    def set_comm_group(self, group_name, group_rank, group_size, ring_id,
                       group_ranks):
        group = paddle.distributed.collective.Group(group_rank, group_size,
                                                    ring_id, group_ranks)
        self.groups[group_name] = group

    def get_group(self, group_name):
        assert group_name in self.groups
        return self.groups[group_name]

    def get_model_parallel_group(self):
        return self.get_group('model')

    def get_model_parallel_world_size(self):
        return self.get_group('model').nranks

    def get_model_parallel_rank(self):
        return self.get_group('model').rank