fc_mkldnn_op.cc 21.5 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/operators/fc_op.h"
19
#include "paddle/fluid/platform/profiler/event_tracing.h"
20
#include "paddle/phi/backends/onednn/onednn_reuse.h"
21

M
mozga-intel 已提交
22 23 24
namespace paddle {
namespace operators {

25
using framework::ExecutionContext;
26
using phi::OneDNNContext;
27 28
using phi::funcs::OneDNNGetDataType;
using phi::funcs::to_void_cast;
29

30 31 32 33 34 35 36
struct InnerProductCache {
  dnnl::inner_product_forward inner_product_p;
  dnnl::memory src_mem;
  dnnl::memory weights_mem;
  dnnl::memory bias_mem;
  dnnl::memory dst_mem;
};
M
Michał Gallus 已提交
37
template <typename T_in, typename T_w, typename T_out>
38
class FCMKLDNNHandler
39 40
    : public phi::funcs::OneDNNHandlerNoCachingT<T_in,
                                                 dnnl::inner_product_forward> {
M
mozga-intel 已提交
41
 public:
42
  FCMKLDNNHandler(const ExecutionContext& ctx,
43
                  const OneDNNContext& dev_ctx,
44 45 46
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* weights,
                  const phi::DenseTensor* bias,
47
                  phi::DenseTensor* out UNUSED,
48
                  const int in_num_col_dims,
49
                  dnnl::engine onednn_engine,
50
                  platform::Place cpu_place)
51
      : phi::funcs::OneDNNHandlerNoCachingT<T_in, dnnl::inner_product_forward>(
52
            onednn_engine, cpu_place),
53 54 55 56 57 58 59 60 61
        dev_ctx_(dev_ctx) {
    this->memory_key_ = ctx.InputName("W");

    auto x_vec_dims = phi::vectorize(x->dims());
    auto weights_vec_dims = phi::vectorize(weights->dims());

    int MB = 1;
    for (int i = 0; i < in_num_col_dims; ++i) {
      MB *= x_vec_dims[i];
62 63
    }

64 65 66
    int IC = 1;
    for (size_t i = in_num_col_dims; i < x_vec_dims.size(); ++i) {
      IC *= x_vec_dims[i];
67
    }
68

69
    int OC = weights_vec_dims[1];
M
mozga-intel 已提交
70

71
    dnnl::memory::desc bias_md;
72

73
    auto src_md = dnnl::memory::desc(
74
        {MB, IC}, OneDNNGetDataType<T_in>(), dnnl::memory::format_tag::any);
75
    auto weights_md = dnnl::memory::desc(
76
        {OC, IC}, OneDNNGetDataType<T_w>(), dnnl::memory::format_tag::any);
77
    auto dst_md = dnnl::memory::desc(
78
        {MB, OC}, OneDNNGetDataType<T_out>(), dnnl::memory::format_tag::any);
79 80
    if (bias) {
      bias_md = dnnl::memory::desc({bias->numel()},
81
                                   OneDNNGetDataType<float>(),
82 83
                                   dnnl::memory::format_tag::a);
    }
84

85
    const auto attrs = CreateFCAttrs(ctx);
A
Adam 已提交
86

87
    this->AcquireForwardPrimitiveDescriptor(attrs,
88
                                            dnnl::prop_kind::forward_inference,
89 90 91 92
                                            src_md,
                                            weights_md,
                                            bias_md,
                                            dst_md);
M
mozga-intel 已提交
93 94
  }

95
 private:
96 97 98
  dnnl::primitive_attr CreateFCAttrs(const ExecutionContext& ctx) {
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
99

100 101
    float sum_scale = 1.0f;
    float activation_scale = 1.0f;
102
    if (phi::funcs::is_int8<T_w>()) {
103 104 105
      std::vector<float> output_shift_scale;
      std::tie(output_shift_scale, sum_scale, activation_scale) =
          GetOutputScales(ctx);
106
      int mask = CreateMask(1, output_shift_scale.size() > 1);
107
      attributes.set_output_scales(mask, output_shift_scale);
108
    }
109

110 111
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
112
      post_operations.append_sum(sum_scale);
113
    }
M
mozga-intel 已提交
114

115 116 117
    // ReLU from "fc_fuse_pass"
    if (ctx.Attr<std::string>("activation_type") == "relu") {
      post_operations.append_eltwise(
118
          activation_scale, dnnl::algorithm::eltwise_relu, 0.0f, 0.0f);
119
    }
120
    AppendActivation(ctx, post_operations, activation_scale);
121

122 123 124 125 126 127
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
          1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
    }

128 129
    attributes.set_post_ops(post_operations);
    return attributes;
130 131
  }

M
Michał Gallus 已提交
132 133
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
134
  std::vector<float> GetBiasScales(const ExecutionContext& ctx) {
135 136 137 138 139 140 141 142 143 144 145 146 147 148
    if (ctx.HasAttr("Bias_scales")) {
      return ctx.Attr<std::vector<float>>("Bias_scales");
    } else {
      const float scale_in = ctx.Attr<float>("Scale_in");
      const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");
      std::vector<float> bias_scales(scale_weights.size());

      for (size_t i = 0; i < bias_scales.size(); ++i) {
        if (scale_weights[i] == 0.0)
          bias_scales[i] = 1.0f;
        else
          bias_scales[i] = scale_in * scale_weights[i];
      }
      return bias_scales;
M
Michał Gallus 已提交
149 150 151
    }
  }

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  void AppendActivation(const ExecutionContext& ctx,
                        dnnl::post_ops& post_ops,  // NOLINT
                        float activation_scale = 1.0f) {
    const auto invalid_attribute =
        ctx.HasAttr("fuse_activation")
            ? ctx.Attr<std::string>("fuse_activation").empty()
            : true;
    if (invalid_attribute) return;

    const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
    const auto fuse_alpha =
        ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
    const auto fuse_beta =
        ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

167 168 169 170 171 172 173 174 175 176 177 178
    const auto activation_map = phi::funcs::OneDNNActivationMap();
    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        phi::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
179 180
  }

M
Michał Gallus 已提交
181 182 183 184 185
  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
186
  std::tuple<std::vector<float>, float, float> GetOutputScales(
187
      const ExecutionContext& ctx) {
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    if (ctx.HasAttr("Sum_scale")) {
      return std::make_tuple(ctx.Attr<std::vector<float>>("Output_shift_scale"),
                             ctx.Attr<float>("Sum_scale"),
                             ctx.Attr<float>("Activation_scale"));
    } else {
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      bool has_activation = !ctx.Attr<std::string>("activation_type").empty();
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      bool fuse_residual_conn = ctx.HasAttr("fuse_residual_connection") &&
                                ctx.Attr<bool>("fuse_residual_connection");
      auto scale_in_eltwise_data = ctx.HasAttr("Scale_in_eltwise")
                                       ? ctx.Attr<float>("Scale_in_eltwise")
                                       : 1.0f;

      // If the output will be in floats, we don't multiply by scale_out.

      float activation_scale = (!force_fp32_output && has_activation)
                                   ? ctx.Attr<float>("Scale_out")
                                   : 1.0f;
      float scale_out_data = (force_fp32_output || has_activation)
                                 ? 1.0f
                                 : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
      const size_t weight_scales_num = scale_weights_data.size();

      for (size_t i = 0; i < weight_scales_num; ++i) {
        if (scale_weights_data[i] == 0.0)
          scale_weights_data[i] = scale_out_data;
        else
          scale_weights_data[i] =
              scale_out_data / (scale_in_data * scale_weights_data[i]);
      }
      return std::make_tuple(scale_weights_data, sum_scale, activation_scale);
M
Michał Gallus 已提交
223 224 225
    }
  }

226 227
  // Computing oneDNN's scaling mask which determines along which dimension
  // slice should the scaling be applied.
M
Michał Gallus 已提交
228 229 230 231
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

232 233 234 235 236 237
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderAndAttrs(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const dnnl::primitive_attr& attrs) {
    std::shared_ptr<dnnl::memory> target_memory_p;
M
Michał Gallus 已提交
238

239 240 241 242 243
    auto user_memory_p =
        std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
    target_memory_p = std::make_shared<dnnl::memory>(target_md, this->engine_);
    auto reorder_p = std::make_shared<dnnl::reorder>(
        *user_memory_p, *target_memory_p, attrs);
M
Michał Gallus 已提交
244

245
    auto& astream = OneDNNContext::tls().get_stream();
246 247 248 249 250 251 252 253 254 255 256
    {
      platform::RecordEvent record_reorder(
          "int_reorder",
          platform::TracerEventType::UserDefined,
          1,
          platform::EventRole::kUniqueOp);
      reorder_p->execute(
          astream,
          {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
      astream.wait();
    }
M
Michał Gallus 已提交
257

258 259
    return target_memory_p;
  }
260

261
  std::string memory_key_;
262
  const OneDNNContext& dev_ctx_;
M
Michał Gallus 已提交
263

264
 public:
265 266
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* x) {
267 268 269 270 271 272 273
    const T_in* x_data = x->data<T_in>();

    auto user_md = x->mem_desc();
    if (x->dims().size() != 2) {
      // reshape restrictions are always satisfied because in case of 3 or 4 dim
      // input, plain layout is enforced
      user_md = user_md.reshape(this->fwd_pd_->src_desc().dims());
M
Michał Gallus 已提交
274 275
    }

276 277
    return this->AcquireMemoryWithReorder(
        user_md, this->fwd_pd_->src_desc(), to_void_cast<T_in>(x_data));
278
  }
M
mozga-intel 已提交
279

280
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
281
      const ExecutionContext& ctx, const phi::DenseTensor* bias) {
282 283
    const float* bias_data = bias->data<float>();

284
    if (phi::funcs::is_int8<T_w>() == false) {
285 286 287 288 289 290 291 292 293
      // for BF16/FP32 bias is 1D and has no scales, so reorder is not needed
      return this->AcquireMemoryFromPrimitive(this->fwd_pd_->bias_desc(),
                                              to_void_cast<float>(bias_data));
    } else {
      const std::string bias_key = this->memory_key_ + "@bias";
      auto memory_p = std::static_pointer_cast<dnnl::memory>(
          this->dev_ctx_.GetBlob(bias_key));

      if (!memory_p) {
294
        const auto& scale_data = GetBiasScales(ctx);
295 296 297 298 299 300
        dnnl::primitive_attr attrs;

        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        auto user_md = dnnl::memory::desc({bias->dims()[0]},
301
                                          OneDNNGetDataType<float>(),
302 303 304 305 306 307 308
                                          dnnl::memory::format_tag::a);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->bias_desc(),
            to_void_cast<float>(bias_data),
            attrs);
309
        this->dev_ctx_.SetBlob(bias_key, memory_p);
310 311 312 313 314 315
      }
      return memory_p;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
316
      const phi::DenseTensor* weights, const std::vector<float>& scale_data) {
317 318 319
    const std::string weights_key = this->memory_key_ + "@weights";
    auto memory_p = std::static_pointer_cast<dnnl::memory>(
        this->dev_ctx_.GetBlob(weights_key));
M
mozga-intel 已提交
320

321 322 323 324 325
    if (!memory_p) {
      const float* weights_data = weights->data<float>();
      auto weights_dims = this->fwd_pd_->weights_desc().dims();

      auto user_md = dnnl::memory::desc(weights_dims,
326
                                        OneDNNGetDataType<float>(),
327 328
                                        dnnl::memory::format_tag::io);

329
      if (phi::funcs::is_int8<T_w>()) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        dnnl::primitive_attr attrs;
        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->weights_desc(),
            to_void_cast<float>(weights_data),
            attrs);
      } else {
        memory_p =
            this->AcquireMemoryWithReorder(user_md,
                                           this->fwd_pd_->weights_desc(),
                                           to_void_cast<float>(weights_data));
      }

      this->dev_ctx_.SetBlob(weights_key, memory_p);
    }
    return memory_p;
349
  }
M
mozga-intel 已提交
350

351
  std::shared_ptr<dnnl::memory> AcquireCustomDstMemory(
352
      const ExecutionContext& ctx, phi::DenseTensor* out) {
353 354
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
355
      auto* residual_param = ctx.Input<phi::DenseTensor>("ResidualData");
356 357

      PADDLE_ENFORCE_EQ(
358
          out->dims(),
359
          residual_param->dims(),
360
          phi::errors::InvalidArgument(
361 362 363
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
364
              out->dims().size(),
365
              residual_param->dims().size()));
366

367
      out->ShareDataWith(*residual_param);
368
    }
369
    return this->template AcquireDstMemory<T_out>(out);
370 371
  }  // namespace operators
};   // namespace paddle
372

373 374 375 376 377 378 379 380 381 382
#define IF_CHANGE_FC_TW_TYPENAME(condition, ...) \
  if (condition) {                               \
    using T_w = int8_t;                          \
    __VA_ARGS__();                               \
  } else {                                       \
    using T_w = T_in;                            \
    __VA_ARGS__();                               \
  }

template <typename T_in>
383 384
class FCMKLDNNKernel : public framework::OpKernel<T_in> {
 public:
385
  void Compute(const ExecutionContext& ctx) const override {
386 387
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
388

389 390 391
    IF_CHANGE_FC_TW_TYPENAME((std::is_same<T_in, uint8_t>::value), ([&] {
                               if (force_fp32_output) {
                                 this->RunKernel<float, T_w>(ctx);
392
                               } else if (phi::funcs::is_int8<T_in>()) {
393 394 395 396 397 398 399 400 401
                                 if (fuse_relu) {
                                   this->RunKernel<uint8_t, T_w>(ctx);
                                 } else {
                                   this->RunKernel<int8_t, T_w>(ctx);
                                 }
                               } else {
                                 this->RunKernel<T_in, T_w>(ctx);
                               }
                             }));
402 403
  }

404
  void PrepareSrcMem(const std::shared_ptr<dnnl::inner_product_forward>& fc_p,
405
                     const std::shared_ptr<dnnl::memory>& src_mem,
406
                     const phi::DenseTensor* x,
407 408 409 410 411 412
                     const dnnl::engine& engine) const {
    auto x_md = x->mem_desc().reshape(src_mem->get_desc().dims());
    if (x_md != src_mem->get_desc()) {
      dnnl::memory x_mem(x_md, engine, to_void_cast<T_in>(x->data<T_in>()));
      auto reorder_p = dnnl::reorder(x_mem, *src_mem);

413
      auto& astream = OneDNNContext::tls().get_stream();
414 415 416 417 418 419 420
      reorder_p.execute(astream, x_mem, *src_mem);
      astream.wait();
    } else {
      src_mem->set_data_handle(to_void_cast<T_in>(x->data<T_in>()));
    }
  }

421
  template <typename T_out, typename T_w>
422
  void RunKernel(const ExecutionContext& ctx) const {
423
    const auto& dev_ctx = ctx.template device_context<OneDNNContext>();
424
    const auto& onednn_engine = dev_ctx.GetEngine();
425

426
    const auto* x = ctx.Input<phi::DenseTensor>("Input");
427 428
    const auto* weights = ctx.Input<phi::DenseTensor>("W");
    const auto* bias = ctx.Input<phi::DenseTensor>("Bias");
429
    auto out = ctx.Output<phi::DenseTensor>("Out");
430 431 432

    const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

433 434 435 436 437 438 439 440
    std::shared_ptr<dnnl::inner_product_forward> fc_p;
    std::shared_ptr<dnnl::memory> src_memory_p;
    std::shared_ptr<dnnl::memory> weights_memory_p;
    std::shared_ptr<dnnl::memory> bias_memory_p;
    std::shared_ptr<dnnl::memory> dst_memory_p;

    std::string cache_key;
    cache_key.reserve(64);
441
    cache_key = phi::funcs::ExtendKeyWithThreadInfoIfNeeded(
442
        dev_ctx,
443 444 445 446
        phi::funcs::CreateKey(dev_ctx,
                              ctx.InputName("Input"),
                              ctx.InputName("W"),
                              phi::vectorize(x->dims())));
447 448 449 450

    auto inner_product_cache =
        std::static_pointer_cast<InnerProductCache>(dev_ctx.GetBlob(cache_key));

451 452
    RecomputeOutputDims(ctx, x, weights, out);

453 454 455 456 457
    if (inner_product_cache) {
      fc_p = std::make_shared<dnnl::inner_product_forward>(
          inner_product_cache->inner_product_p);
      src_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->src_mem);
458
      PrepareSrcMem(fc_p, src_memory_p, x, onednn_engine);
459 460 461 462 463 464 465 466

      weights_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->weights_mem);

      dst_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->dst_mem);
      if (ctx.HasAttr("fuse_residual_connection") &&
          ctx.Attr<bool>("fuse_residual_connection")) {
467
        auto* residual_param = ctx.Input<phi::DenseTensor>("ResidualData");
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
        out->ShareDataWith(*residual_param);
      }
      auto out_ptr = out->mutable_data<T_out>(
          ctx.GetPlace(), dst_memory_p->get_desc().get_size());
      dst_memory_p->set_data_handle(out_ptr);

      if (bias) {
        bias_memory_p =
            std::make_shared<dnnl::memory>(inner_product_cache->bias_mem);
      }
    } else {
      auto in_col_dims = ctx.Attr<int>("in_num_col_dims");

      FCMKLDNNHandler<T_in, T_w, T_out> handler(ctx,
                                                dev_ctx,
                                                x,
                                                weights,
                                                bias,
                                                out,
                                                in_col_dims,
488
                                                onednn_engine,
489 490 491 492 493 494 495 496
                                                ctx.GetPlace());

      src_memory_p = handler.AcquireSrcMemoryWithReorder(x);
      weights_memory_p =
          handler.AcquireWeightsMemoryWithReorder(weights, scale_weights);
      dst_memory_p = handler.AcquireCustomDstMemory(ctx, out);

      if (bias) {
497
        bias_memory_p = handler.AcquireBiasMemoryWithReorder(ctx, bias);
498 499 500 501 502
      }

      fc_p = handler.AcquireForwardPrimitive();
    }

503
    auto& astream = OneDNNContext::tls().get_stream();
504 505 506 507 508 509 510 511 512 513 514 515 516

    std::unordered_map<int, dnnl::memory> fc_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    if (bias) {
      fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p});
    }

    fc_p->execute(astream, fc_args);
    astream.wait();

517 518 519 520 521 522 523 524 525 526 527 528
    if (!inner_product_cache) {
      auto ip_cache = std::make_shared<InnerProductCache>();
      ip_cache->inner_product_p = *fc_p;
      ip_cache->src_mem = *src_memory_p;
      ip_cache->weights_mem = *weights_memory_p;
      ip_cache->dst_mem = *dst_memory_p;
      if (bias) {
        ip_cache->bias_mem = *bias_memory_p;
      }
      dev_ctx.SetBlob(cache_key, ip_cache);
    }

529 530 531 532 533 534 535 536 537
    const auto out_md =
        dst_memory_p->get_desc().reshape(phi::vectorize(out->dims()));

    if (ctx.HasAttr("fused_reshape2_shape")) {
      phi::funcs::SetOutMemDescWithReshape2FuseSupport(
          ctx.Attr<std::vector<int>>("fused_reshape2_shape"), out, out_md);
    } else {
      out->set_mem_desc(out_md);
    }
538
  }
M
mozga-intel 已提交
539

540
  void RecomputeOutputDims(const ExecutionContext& ctx,
541
                           const phi::DenseTensor* x,
542
                           const phi::DenseTensor* weights,
543
                           phi::DenseTensor* out) const {
L
luotao1 已提交
544
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
545
    bool padding_weights = ctx.Attr<bool>("padding_weights");
546 547
    PADDLE_ENFORCE_EQ(padding_weights,
                      false,
548 549
                      phi::errors::PermissionDenied(
                          "Weight padding in fc can not be used in oneDNN."));
L
luotao1 已提交
550
    std::vector<int64_t> output_dims;
551 552
    FCOutputSize(x->dims(),
                 weights->dims(),
553 554
                 output_dims,
                 in_num_col_dims,
555
                 padding_weights);
556 557
    out->Resize(phi::make_ddim(output_dims));
    out->set_lod(x->lod());
558 559
  }
};
M
mozga-intel 已提交
560 561 562 563

}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
564 565 566 567
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
568 569 570

REGISTER_OP_KERNEL(fc,
                   MKLDNN,
571
                   ::phi::CPUPlace,
572 573 574 575
                   ops::FCMKLDNNKernel<float>,
                   ops::FCMKLDNNKernel<paddle::platform::bfloat16>,
                   ops::FCMKLDNNKernel<uint8_t>,
                   ops::FCMKLDNNKernel<int8_t>);