cudnn_helper.h 21.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
Y
Pass CI  
Yu Yang 已提交
18
#include <vector>
19 20

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
23
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
25

W
wanghuancoder 已提交
26 27 28 29 30 31
namespace paddle {
namespace platform {
struct float16;
}  // namespace platform
}  // namespace paddle

D
dzhwinter 已提交
32 33
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
34 35 36
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

D
"fix"  
dzhwinter 已提交
69 70 71 72
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
73
  kNDHWC,  // add, liyamei
D
"fix"  
dzhwinter 已提交
74 75 76 77 78 79
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
80 81
  kAverageExclusive,
  kAverageInclusive,
D
"fix"  
dzhwinter 已提交
82 83
};

84
enum class ActivationMode {
Q
qingqing01 已提交
85 86 87 88 89 90 91 92 93
  kNone,  // activation identity
  kSigmoid,
  kRelu,
  kRelu6,
  kReluX,
  kTanh,
  kBandPass,
};

D
"done"  
dzhwinter 已提交
94 95 96 97 98 99
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
100

D
dzhwinter 已提交
101 102 103 104
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
105
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
106
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
107 108
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
109 110 111
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
G
GaoWei8 已提交
112 113
      PADDLE_THROW(
          platform::errors::Unimplemented("Unexpected CUDNN pooling mode."));
D
dzhwinter 已提交
114 115 116
  }
}
#else
D
dangqingqing 已提交
117

D
dzhwinter 已提交
118 119 120 121
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
122
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
123
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
124 125
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
126 127 128
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
G
GaoWei8 已提交
129 130
      PADDLE_THROW(
          platform::errors::Unimplemented("Unexpected CUDNN pooling mode."));
D
dzhwinter 已提交
131 132
  }
}
D
dzhwinter 已提交
133 134
#endif  // CUDNN_VERSION < 6000

Q
qingqing01 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
inline ActivationMode StringToActivationMode(const std::string& str) {
  if (str == "identity") {
    return ActivationMode::kNone;
  } else if (str == "sigmoid") {
    return ActivationMode::kSigmoid;
  } else if (str == "relu") {
    return ActivationMode::kRelu;
  } else if (str == "relu6") {
    return ActivationMode::kRelu6;
  } else if (str == "relux") {
    return ActivationMode::kReluX;
  } else if (str == "tanh") {
    return ActivationMode::kTanh;
  } else if (str == "bandpass") {
    return ActivationMode::kBandPass;
  } else {
G
GaoWei8 已提交
151 152
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unknown CUDNN activation string: %s.", str));
Q
qingqing01 已提交
153 154 155
  }
}

D
dangqingqing 已提交
156 157 158
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
159 160 161 162
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
163
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
164 165
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
166
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
167
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
168 169 170
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
171
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
172 173 174 175
    return &v;
  }
};

D
dangqingqing 已提交
176 177 178 179
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
180 181
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
182 183 184 185 186 187 188 189
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
190 191 192 193 194 195
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
196 197
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
198 199 200 201 202 203 204 205
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
206 207
};

C
chengduoZH 已提交
208 209
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
210 211 212 213 214
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
215
    case DataLayout::kNCDHW:
武毅 已提交
216
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
217 218
    case DataLayout::kNDHWC:
      return CUDNN_TENSOR_NHWC;  // add, liyamei
D
dangqingqing 已提交
219
    default:
G
GaoWei8 已提交
220 221
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDNN has no equivalent dataLayout for input order."));
D
dangqingqing 已提交
222 223 224 225 226 227 228
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
229
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&desc_));
D
dangqingqing 已提交
230
  }
Z
Zeng Jinle 已提交
231
  ~ScopedTensorDescriptor() PADDLE_MAY_THROW {
232
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(desc_));
D
dangqingqing 已提交
233 234 235 236
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
237 238 239
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
240 241
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
242 243
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
244
    }
武毅 已提交
245
    // Update tensor descriptor dims setting if groups > 1
246 247
    // NOTE: Here, Assume using NCHW or NCDHW order
    std::vector<int> dims_with_group(dims.begin(), dims.end());
武毅 已提交
248 249 250
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    if (dims.size() == 4) {
      if (format == CUDNN_TENSOR_NCHW) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
            desc_, type, dims_with_group.size(), dims_with_group.data(),
            strides.data()));
      } else {  // CUDNN_TENSOR_NHWC
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensor4dDescriptor(
            desc_, format, type, dims[0], dims[3], dims[1], dims[2]));
      }
    } else if (dims.size() == 5) {
      if (format == CUDNN_TENSOR_NCHW) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
            desc_, type, dims_with_group.size(), dims_with_group.data(),
            strides.data()));
      } else {  // CUDNN_TENSOR_NHWC
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptorEx(
            desc_, format, type, dims.size(), dims.data()));
      }
    }
D
dangqingqing 已提交
271 272 273 274 275
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
276 277 278 279
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
280 281
  }

G
GaoWei8 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295
  inline cudnnTensorDescriptor_t descriptor(const cudnnDataType_t cudnn_type,
                                            const std::vector<int>& dim,
                                            const std::vector<int>& stride) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
        desc_, cudnn_type, dim.size(), dim.data(), stride.data()));
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const std::vector<int>& dim,
                                            const std::vector<int>& stride) {
    return descriptor(CudnnDataType<T>::type, dim, stride);
  }

296 297
  inline cudnnTensorDescriptor_t desc() { return desc_; }

D
dangqingqing 已提交
298 299 300 301 302
 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

G
GaoWei8 已提交
303
#if CUDNN_VERSION >= 7201
G
GaoWei8 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
class ScopedRNNTensorDescriptor {
 public:
  ScopedRNNTensorDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateRNNDataDescriptor(&desc_));
  }

  ~ScopedRNNTensorDescriptor() PADDLE_MAY_THROW {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyRNNDataDescriptor(desc_));
  }

  inline cudnnRNNDataDescriptor_t descriptor(
      const cudnnDataType_t cudnn_type, int max_seq_length, int batch_size,
      int input_size, bool time_major, const std::vector<int>& seq_length) {
    static float padding_fill = 0.0f;
    cudnnRNNDataLayout_t layout;

    if (time_major) {
      layout = CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED;
    } else {
      layout = CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED;
    }

    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetRNNDataDescriptor(
        desc_, cudnn_type, layout, max_seq_length, batch_size, input_size,
        seq_length.data(), static_cast<void*>(&padding_fill)));

    return desc_;
  }

  template <typename T>
  inline cudnnRNNDataDescriptor_t descriptor(
      int max_length, int batch_size, int input_size, bool time_major,
      const std::vector<int>& seq_length) {
    return descriptor(CudnnDataType<T>::type, max_length, batch_size,
                      input_size, time_major, seq_length);
  }

341 342
  inline cudnnRNNDataDescriptor_t desc() { return desc_; }

G
GaoWei8 已提交
343 344 345 346
 private:
  cudnnRNNDataDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedRNNTensorDescriptor);
};
G
GaoWei8 已提交
347
#endif
G
GaoWei8 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

class ScopedDropoutDescriptor {
 public:
  ScopedDropoutDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateDropoutDescriptor(&desc_));
  }
  ~ScopedDropoutDescriptor() PADDLE_MAY_THROW {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyDropoutDescriptor(desc_));
  }

  inline cudnnDropoutDescriptor_t descriptor(const cudnnHandle_t& handle,
                                             const platform::Place& place,
                                             bool initialized,
                                             float dropout_prob_,
                                             framework::Tensor* dropout_state_,
                                             int seed, size_t state_size) {
    auto* dropout_state_data = dropout_state_->data<uint8_t>();
    if (!initialized) {
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetDropoutDescriptor(
          desc_, handle, dropout_prob_, dropout_state_data, state_size, seed));
    } else {
      auto dropout_state_dims = dropout_state_->dims();
      state_size = dropout_state_dims[0];
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnRestoreDropoutDescriptor(
          desc_, handle, dropout_prob_, dropout_state_data, state_size, 0));
    }
    return desc_;
  }
376
  inline cudnnDropoutDescriptor_t desc() { return desc_; }
G
GaoWei8 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

 private:
  cudnnDropoutDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedDropoutDescriptor);
};

class ScopedRNNDescriptor {
 public:
  ScopedRNNDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateRNNDescriptor(&desc_));
  }
  ~ScopedRNNDescriptor() PADDLE_MAY_THROW {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyRNNDescriptor(desc_));
  }

392
  inline cudnnRNNDescriptor_t desc() { return desc_; }
G
GaoWei8 已提交
393 394 395 396 397 398

 private:
  cudnnRNNDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedRNNDescriptor);
};

D
dangqingqing 已提交
399 400 401
class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
402
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&desc_));
D
dangqingqing 已提交
403
  }
Z
Zeng Jinle 已提交
404
  ~ScopedFilterDescriptor() PADDLE_MAY_THROW {
405
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(desc_));
D
dangqingqing 已提交
406 407 408 409
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
410 411
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
412
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
413
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
414 415
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
416 417 418 419 420
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
421
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
422 423
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
424 425 426 427 428
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
429 430
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
431
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
432
                      kernel, groups);
D
dangqingqing 已提交
433 434
  }

435 436
  inline cudnnFilterDescriptor_t desc() { return desc_; }

D
dangqingqing 已提交
437 438 439 440 441 442 443 444
 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
445 446
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateConvolutionDescriptor(&desc_));
D
dangqingqing 已提交
447
  }
Z
Zeng Jinle 已提交
448
  ~ScopedConvolutionDescriptor() PADDLE_MAY_THROW {
449 450
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyConvolutionDescriptor(desc_));
D
dangqingqing 已提交
451 452 453 454 455
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
G
GaoWei8 已提交
456 457 458 459 460 461 462 463 464 465 466
    PADDLE_ENFORCE_EQ(pads.size(), strides.size(),
                      platform::errors::InvalidArgument(
                          "The size of pads and strides should be equal. But "
                          "received size of pads is %d, size of strides is %d.",
                          pads.size(), strides.size()));
    PADDLE_ENFORCE_EQ(
        pads.size(), dilations.size(),
        platform::errors::InvalidArgument(
            "The size of pads and dilations should be equal. But received size "
            "of pads is %d, size of dilations is %d.",
            pads.size(), dilations.size()));
467

468
#if !CUDNN_VERSION_MIN(6, 0, 0)
469 470 471
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
G
GaoWei8 已提交
472 473 474 475 476 477
      PADDLE_ENFORCE_EQ(dilations[i], 1,
                        platform::errors::InvalidArgument(
                            "Dilations conv is not supported in this cuDNN "
                            "version(%d.%d.%d).",
                            CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
                            CUDNN_VERSION % 100));
478 479 480
    }
#endif

K
Kexin Zhao 已提交
481 482
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
483
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
484
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
485
        CUDNN_CROSS_CORRELATION, compute_type));
486
    return desc_;
D
dangqingqing 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
504
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreatePoolingDescriptor(&desc_));
D
dangqingqing 已提交
505
  }
Z
Zeng Jinle 已提交
506
  ~ScopedPoolingDescriptor() PADDLE_MAY_THROW {
507
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyPoolingDescriptor(desc_));
D
dangqingqing 已提交
508 509 510 511 512 513
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
G
GaoWei8 已提交
514 515 516 517 518 519 520 521 522 523 524
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size(),
                      platform::errors::InvalidArgument(
                          "The size of kernel and pads should be equal. But "
                          "received size of kernel is %d, size of pads is %d.",
                          kernel.size(), pads.size()));
    PADDLE_ENFORCE_EQ(
        kernel.size(), strides.size(),
        platform::errors::InvalidArgument(
            "The size of kernel and strides should be equal. But "
            "received size of kernel is %d, size of strides is %d.",
            kernel.size(), strides.size()));
525
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
526
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
527 528
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
529
    return desc_;
D
dangqingqing 已提交
530 531 532 533 534 535 536
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

W
whs 已提交
537 538 539
class ScopedSpatialTransformerDescriptor {
 public:
  ScopedSpatialTransformerDescriptor() {
540 541
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
W
whs 已提交
542
  }
Z
Zeng Jinle 已提交
543
  ~ScopedSpatialTransformerDescriptor() PADDLE_MAY_THROW {
544 545
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
W
whs 已提交
546 547 548 549 550
  }

  template <typename T>
  inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
                                                        const int dimA[]) {
551
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetSpatialTransformerNdDescriptor(
W
whs 已提交
552 553 554 555 556 557 558 559 560
        desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
    return desc_;
  }

 private:
  cudnnSpatialTransformerDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
};

Q
qingqing01 已提交
561 562 563
class ScopedActivationDescriptor {
 public:
  ScopedActivationDescriptor() {
564 565
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateActivationDescriptor(&desc_));
Q
qingqing01 已提交
566
  }
Z
Zeng Jinle 已提交
567
  ~ScopedActivationDescriptor() PADDLE_MAY_THROW {
568 569
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyActivationDescriptor(desc_));
Q
qingqing01 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  }

  template <typename T>
  inline cudnnActivationDescriptor_t descriptor(
      const std::string& act, double value_max = static_cast<double>(0.)) {
    double relu_ceiling = 0.0;
    ActivationMode activation_mode = StringToActivationMode(act);
    cudnnActivationMode_t mode;
    switch (activation_mode) {
#if CUDNN_VERSION >= 7100
      case ActivationMode::kNone:
        mode = CUDNN_ACTIVATION_IDENTITY;
        break;
#endif
      case ActivationMode::kRelu6:
        relu_ceiling = 6.0;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kReluX:
        relu_ceiling = value_max;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kRelu:
        mode = CUDNN_ACTIVATION_RELU;
        break;
      case ActivationMode::kSigmoid:
        mode = CUDNN_ACTIVATION_SIGMOID;
        break;
      case ActivationMode::kTanh:
        mode = CUDNN_ACTIVATION_TANH;
        break;
      default:
G
GaoWei8 已提交
602 603 604
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unrecognized CUDNN activation mode: %d.",
            static_cast<int>(activation_mode)));
Q
qingqing01 已提交
605
    }
606
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetActivationDescriptor(
Q
qingqing01 已提交
607 608 609 610 611 612 613 614 615
        desc_, mode, CUDNN_NOT_PROPAGATE_NAN, relu_ceiling));
    return desc_;
  }

 private:
  cudnnActivationDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedActivationDescriptor);
};

616 617 618 619 620
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
621
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
622 623 624 625 626 627
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

W
Wu Yi 已提交
628 629 630 631
#if CUDNN_VERSION >= 7001
class ScopedCTCLossDescriptor {
 public:
  ScopedCTCLossDescriptor() {
632
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateCTCLossDescriptor(&desc_));
W
Wu Yi 已提交
633
  }
Z
Zeng Jinle 已提交
634
  ~ScopedCTCLossDescriptor() PADDLE_MAY_THROW {
635
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyCTCLossDescriptor(desc_));
W
Wu Yi 已提交
636 637 638 639
  }

  template <typename T>
  inline cudnnCTCLossDescriptor_t descriptor() {
640
    PADDLE_ENFORCE_CUDA_SUCCESS(
W
Wu Yi 已提交
641 642 643 644 645 646 647 648 649 650
        dynload::cudnnSetCTCLossDescriptor(desc_, CudnnDataType<T>::type));
    return desc_;
  }

 private:
  cudnnCTCLossDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor);
};
#endif

D
dangqingqing 已提交
651 652
}  // namespace platform
}  // namespace paddle