cudnn_helper.h 27.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
Y
Pass CI  
Yu Yang 已提交
18
#include <vector>
19 20

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
23
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
25

D
dzhwinter 已提交
26 27
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
28 29 30
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

D
"fix"  
dzhwinter 已提交
63 64 65 66
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
67
  kNDHWC,  // add, liyamei
D
"fix"  
dzhwinter 已提交
68 69 70 71 72 73
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
74 75
  kAverageExclusive,
  kAverageInclusive,
D
"fix"  
dzhwinter 已提交
76 77
};

78
enum class ActivationMode {
Q
qingqing01 已提交
79 80 81 82 83 84 85 86 87
  kNone,  // activation identity
  kSigmoid,
  kRelu,
  kRelu6,
  kReluX,
  kTanh,
  kBandPass,
};

D
"done"  
dzhwinter 已提交
88 89 90 91 92 93
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
94

D
dzhwinter 已提交
95 96 97 98
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
99
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
100
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
101 102
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
103 104 105
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
G
GaoWei8 已提交
106 107
      PADDLE_THROW(
          platform::errors::Unimplemented("Unexpected CUDNN pooling mode."));
D
dzhwinter 已提交
108 109 110
  }
}
#else
D
dangqingqing 已提交
111

D
dzhwinter 已提交
112 113 114 115
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
116
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
117
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
118 119
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
120 121 122
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
G
GaoWei8 已提交
123 124
      PADDLE_THROW(
          platform::errors::Unimplemented("Unexpected CUDNN pooling mode."));
D
dzhwinter 已提交
125 126
  }
}
D
dzhwinter 已提交
127 128
#endif  // CUDNN_VERSION < 6000

Q
qingqing01 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
inline ActivationMode StringToActivationMode(const std::string& str) {
  if (str == "identity") {
    return ActivationMode::kNone;
  } else if (str == "sigmoid") {
    return ActivationMode::kSigmoid;
  } else if (str == "relu") {
    return ActivationMode::kRelu;
  } else if (str == "relu6") {
    return ActivationMode::kRelu6;
  } else if (str == "relux") {
    return ActivationMode::kReluX;
  } else if (str == "tanh") {
    return ActivationMode::kTanh;
  } else if (str == "bandpass") {
    return ActivationMode::kBandPass;
  } else {
G
GaoWei8 已提交
145 146
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unknown CUDNN activation string: %s.", str));
Q
qingqing01 已提交
147 148 149
  }
}

D
dangqingqing 已提交
150 151 152
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
153 154 155 156
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
157
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
158 159
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
160
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
161
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
162 163 164
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
165
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
166 167 168 169
    return &v;
  }
};

D
dangqingqing 已提交
170 171 172 173
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
174 175
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
176 177 178 179 180 181 182 183
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
184 185 186 187 188 189
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
190 191
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
192 193 194 195 196 197 198 199
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
200 201
};

C
chengduoZH 已提交
202 203
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
204 205 206 207 208
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
209
    case DataLayout::kNCDHW:
武毅 已提交
210
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
211 212
    case DataLayout::kNDHWC:
      return CUDNN_TENSOR_NHWC;  // add, liyamei
D
dangqingqing 已提交
213
    default:
G
GaoWei8 已提交
214 215
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDNN has no equivalent dataLayout for input order."));
D
dangqingqing 已提交
216 217 218 219 220 221 222
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
223
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&desc_));
D
dangqingqing 已提交
224
  }
Z
Zeng Jinle 已提交
225
  ~ScopedTensorDescriptor() PADDLE_MAY_THROW {
226
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(desc_));
D
dangqingqing 已提交
227 228 229 230
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
231 232 233
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
234 235
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
236 237
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
238
    }
武毅 已提交
239
    // Update tensor descriptor dims setting if groups > 1
240 241
    // NOTE: Here, Assume using NCHW or NCDHW order
    std::vector<int> dims_with_group(dims.begin(), dims.end());
武毅 已提交
242 243 244
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    if (dims.size() == 4) {
      if (format == CUDNN_TENSOR_NCHW) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
            desc_, type, dims_with_group.size(), dims_with_group.data(),
            strides.data()));
      } else {  // CUDNN_TENSOR_NHWC
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensor4dDescriptor(
            desc_, format, type, dims[0], dims[3], dims[1], dims[2]));
      }
    } else if (dims.size() == 5) {
      if (format == CUDNN_TENSOR_NCHW) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
            desc_, type, dims_with_group.size(), dims_with_group.data(),
            strides.data()));
      } else {  // CUDNN_TENSOR_NHWC
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptorEx(
            desc_, format, type, dims.size(), dims.data()));
      }
    }
D
dangqingqing 已提交
265 266 267 268 269
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
270 271 272 273
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
274 275
  }

G
GaoWei8 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289
  inline cudnnTensorDescriptor_t descriptor(const cudnnDataType_t cudnn_type,
                                            const std::vector<int>& dim,
                                            const std::vector<int>& stride) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
        desc_, cudnn_type, dim.size(), dim.data(), stride.data()));
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const std::vector<int>& dim,
                                            const std::vector<int>& stride) {
    return descriptor(CudnnDataType<T>::type, dim, stride);
  }

D
dangqingqing 已提交
290 291 292 293 294
 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

G
GaoWei8 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
class ScopedRNNTensorDescriptor {
 public:
  ScopedRNNTensorDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateRNNDataDescriptor(&desc_));
  }

  ~ScopedRNNTensorDescriptor() PADDLE_MAY_THROW {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyRNNDataDescriptor(desc_));
  }

  inline cudnnRNNDataDescriptor_t descriptor(
      const cudnnDataType_t cudnn_type, int max_seq_length, int batch_size,
      int input_size, bool time_major, const std::vector<int>& seq_length) {
    static float padding_fill = 0.0f;
    cudnnRNNDataLayout_t layout;

    if (time_major) {
      layout = CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED;
    } else {
      layout = CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED;
    }

    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetRNNDataDescriptor(
        desc_, cudnn_type, layout, max_seq_length, batch_size, input_size,
        seq_length.data(), static_cast<void*>(&padding_fill)));

    return desc_;
  }

  template <typename T>
  inline cudnnRNNDataDescriptor_t descriptor(
      int max_length, int batch_size, int input_size, bool time_major,
      const std::vector<int>& seq_length) {
    return descriptor(CudnnDataType<T>::type, max_length, batch_size,
                      input_size, time_major, seq_length);
  }

 private:
  cudnnRNNDataDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedRNNTensorDescriptor);
};

class ScopedDropoutDescriptor {
 public:
  ScopedDropoutDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateDropoutDescriptor(&desc_));
  }
  ~ScopedDropoutDescriptor() PADDLE_MAY_THROW {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyDropoutDescriptor(desc_));
  }

  inline cudnnDropoutDescriptor_t descriptor(const cudnnHandle_t& handle,
                                             const platform::Place& place,
                                             bool initialized,
                                             float dropout_prob_,
                                             framework::Tensor* dropout_state_,
                                             int seed, size_t state_size) {
    auto* dropout_state_data = dropout_state_->data<uint8_t>();
    if (!initialized) {
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetDropoutDescriptor(
          desc_, handle, dropout_prob_, dropout_state_data, state_size, seed));
    } else {
      auto dropout_state_dims = dropout_state_->dims();
      state_size = dropout_state_dims[0];
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnRestoreDropoutDescriptor(
          desc_, handle, dropout_prob_, dropout_state_data, state_size, 0));
    }
    return desc_;
  }

 private:
  cudnnDropoutDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedDropoutDescriptor);
};

class ScopedRNNDescriptor {
 public:
  ScopedRNNDescriptor() {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateRNNDescriptor(&desc_));
  }
  ~ScopedRNNDescriptor() PADDLE_MAY_THROW {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyRNNDescriptor(desc_));
  }

  inline cudnnRNNDescriptor_t descriptor() { return desc_; }

 private:
  cudnnRNNDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedRNNDescriptor);
};

D
dangqingqing 已提交
386 387 388
class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
389
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&desc_));
D
dangqingqing 已提交
390
  }
Z
Zeng Jinle 已提交
391
  ~ScopedFilterDescriptor() PADDLE_MAY_THROW {
392
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(desc_));
D
dangqingqing 已提交
393 394 395 396
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
397 398
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
399
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
400
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
401 402
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
403 404 405 406 407
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
408
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
409 410
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
411 412 413 414 415
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
416 417
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
418
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
419
                      kernel, groups);
D
dangqingqing 已提交
420 421 422 423 424 425 426
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

G
GaoWei8 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
class ScopedRNNBase {
 public:
  ScopedRNNBase(int seq_length, int batch_size, int input_size, int hidden_size,
                int num_layers, float dropout_prob, int seed, int weight_numel,
                bool initialized, bool is_bidirec)
      : seq_length_(seq_length),
        batch_size_(batch_size),
        input_size_(input_size),
        hidden_size_(hidden_size),
        num_layers_(num_layers),
        dropout_prob_(dropout_prob),
        seed_(seed),
        weight_numel_(weight_numel),
        initialized_(initialized),
        is_bidirec_(is_bidirec) {}

  template <typename T>
  void Create(const cudnnHandle_t& handle, const platform::Place& place,
              std::vector<int> sequence_length, size_t* workspace_size,
              size_t* reserve_size, framework::Tensor* dropout_state) {
    int numDirections = is_bidirec_ ? 2 : 1;
    cudnnDataType_t cudnn_type = platform::CudnnDataType<T>::type;

    // ------------------- cudnn x, y descriptors ---------------------
    std::vector<int> dims_x = {batch_size_, input_size_, 1};
    std::vector<int> strides_x = {input_size_, 1, 1};

    std::vector<int> dims_y = {batch_size_, hidden_size_ * numDirections, 1};
    std::vector<int> strides_y = {hidden_size_ * numDirections, 1, 1};

    for (int i = 0; i < seq_length_; ++i) {
      x_desc_.emplace_back(x_d.descriptor<T>(dims_x, strides_x));
      y_desc_.emplace_back(y_d.descriptor<T>(dims_y, strides_y));
    }

    if (!sequence_length.empty()) {
      x_seq_desc_ = x_seq_d.descriptor<T>(seq_length_, batch_size_, input_size_,
                                          true, sequence_length);
      y_seq_desc_ = y_seq_d.descriptor<T>(seq_length_, batch_size_,
                                          hidden_size_ * numDirections, true,
                                          sequence_length);
    }

    // ------------------- cudnn hx, hy, cx, cy descriptors----------
    std::vector<int> dims_hx = {num_layers_ * numDirections, batch_size_,
                                hidden_size_};
    std::vector<int> strides_hx = {hidden_size_ * batch_size_, hidden_size_, 1};

    hx_desc_ = hx_d.descriptor<T>(dims_hx, strides_hx);
    cx_desc_ = cx_d.descriptor<T>(dims_hx, strides_hx);
    hy_desc_ = hy_d.descriptor<T>(dims_hx, strides_hx);
    cy_desc_ = cy_d.descriptor<T>(dims_hx, strides_hx);

    // ------------------- cudnn dropout descriptors ---------------------
    size_t state_size;
    if (!initialized_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnDropoutGetStatesSize(handle, &state_size));
      dropout_state->mutable_data<uint8_t>({static_cast<int64_t>(state_size)},
                                           place);
    }
    dropout_desc_ =
        dropout_d.descriptor(handle, place, initialized_, dropout_prob_,
                             dropout_state, seed_, state_size);

    // ------------------- cudnn rnn descriptors ---------------------
    rnn_desc_ = rnn_d.descriptor();

#if CUDNN_VERSION >= 6000
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor_v6(
        handle, rnn_desc_, hidden_size_, num_layers_, dropout_desc_,
        CUDNN_LINEAR_INPUT,
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
        CUDNN_RNN_ALGO_STANDARD, cudnn_type));
#else
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor(
        rnn_desc_, hidden_size_, num_layers_, dropout_desc_, CUDNN_LINEAR_INPUT,
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
        cudnn_type));
#endif
    if (!sequence_length.empty()) {
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNPaddingMode(
          rnn_desc_, CUDNN_RNN_PADDED_IO_ENABLED));
    }
    // ------------------- cudnn weights_size ---------------------
    size_t weights_size_;
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNParamsSize(
        handle, rnn_desc_, x_desc_[0], &weights_size_, cudnn_type));

    PADDLE_ENFORCE_EQ(
        weights_size_, sizeof(T) * weight_numel_,
        platform::errors::InvalidArgument(
            "The cudnn lstm and setting weight size should be same."));

    // ------------------- cudnn weight descriptors ---------------------
    platform::DataLayout layout = platform::DataLayout::kNCHW;
    int dim_tmp = weights_size_ / sizeof(T);
    std::vector<int> dim_w = {dim_tmp, 1, 1};
    w_desc_ = w_d.descriptor<T>(layout, dim_w);

    // ------------------- cudnn workspace, reserve size ---------------------
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNWorkspaceSize(
        handle, rnn_desc_, seq_length_, x_desc_.data(), workspace_size));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetRNNTrainingReserveSize(
            handle, rnn_desc_, seq_length_, x_desc_.data(), reserve_size));
  }

  cudnnTensorDescriptor_t* x_desc() { return x_desc_.data(); }
  cudnnTensorDescriptor_t* y_desc() { return y_desc_.data(); }
  cudnnRNNDataDescriptor_t x_seq_desc() { return x_seq_desc_; }
  cudnnRNNDataDescriptor_t y_seq_desc() { return y_seq_desc_; }
  cudnnTensorDescriptor_t hx_desc() { return hx_desc_; }
  cudnnTensorDescriptor_t cx_desc() { return cx_desc_; }
  cudnnTensorDescriptor_t hy_desc() { return hy_desc_; }
  cudnnTensorDescriptor_t cy_desc() { return cy_desc_; }
  cudnnRNNDescriptor_t rnn_desc() { return rnn_desc_; }
  cudnnDropoutDescriptor_t dropout_desc() { return dropout_desc_; }
  cudnnFilterDescriptor_t w_desc() { return w_desc_; }

 private:
  int seq_length_;
  int batch_size_;
  int input_size_;
  int hidden_size_;
  int num_layers_;
  float dropout_prob_;
  int seed_;
  int weight_numel_;
  bool initialized_;
  bool is_bidirec_;

  std::vector<cudnnTensorDescriptor_t> x_desc_;
  std::vector<cudnnTensorDescriptor_t> y_desc_;
  cudnnRNNDataDescriptor_t x_seq_desc_;
  cudnnRNNDataDescriptor_t y_seq_desc_;
  // A tensor descriptor describing the initial hidden state of the RNN.
  cudnnTensorDescriptor_t hx_desc_;
  // A tensor descriptor describing the initial cell state for LSTM networks.
  cudnnTensorDescriptor_t cx_desc_;
  // A tensor descriptor describing the final hidden state of the RNN.
  cudnnTensorDescriptor_t hy_desc_;
  // A tensor descriptor describing the final cell state for LSTM networks.
  cudnnTensorDescriptor_t cy_desc_;
  cudnnDropoutDescriptor_t dropout_desc_;
  cudnnFilterDescriptor_t w_desc_;
  cudnnRNNDescriptor_t rnn_desc_;

  ScopedTensorDescriptor x_d;
  ScopedTensorDescriptor y_d;
  ScopedRNNTensorDescriptor x_seq_d;
  ScopedRNNTensorDescriptor y_seq_d;
  ScopedTensorDescriptor hx_d;
  ScopedTensorDescriptor cx_d;
  ScopedTensorDescriptor hy_d;
  ScopedTensorDescriptor cy_d;
  ScopedDropoutDescriptor dropout_d;
  ScopedFilterDescriptor w_d;
  ScopedRNNDescriptor rnn_d;
};

D
dangqingqing 已提交
588 589 590
class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
591 592
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateConvolutionDescriptor(&desc_));
D
dangqingqing 已提交
593
  }
Z
Zeng Jinle 已提交
594
  ~ScopedConvolutionDescriptor() PADDLE_MAY_THROW {
595 596
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyConvolutionDescriptor(desc_));
D
dangqingqing 已提交
597 598 599 600 601
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
G
GaoWei8 已提交
602 603 604 605 606 607 608 609 610 611 612
    PADDLE_ENFORCE_EQ(pads.size(), strides.size(),
                      platform::errors::InvalidArgument(
                          "The size of pads and strides should be equal. But "
                          "received size of pads is %d, size of strides is %d.",
                          pads.size(), strides.size()));
    PADDLE_ENFORCE_EQ(
        pads.size(), dilations.size(),
        platform::errors::InvalidArgument(
            "The size of pads and dilations should be equal. But received size "
            "of pads is %d, size of dilations is %d.",
            pads.size(), dilations.size()));
613

614
#if !CUDNN_VERSION_MIN(6, 0, 0)
615 616 617
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
G
GaoWei8 已提交
618 619 620 621 622 623
      PADDLE_ENFORCE_EQ(dilations[i], 1,
                        platform::errors::InvalidArgument(
                            "Dilations conv is not supported in this cuDNN "
                            "version(%d.%d.%d).",
                            CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
                            CUDNN_VERSION % 100));
624 625 626
    }
#endif

K
Kexin Zhao 已提交
627 628
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
629
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
630
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
631
        CUDNN_CROSS_CORRELATION, compute_type));
632
    return desc_;
D
dangqingqing 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
650
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreatePoolingDescriptor(&desc_));
D
dangqingqing 已提交
651
  }
Z
Zeng Jinle 已提交
652
  ~ScopedPoolingDescriptor() PADDLE_MAY_THROW {
653
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyPoolingDescriptor(desc_));
D
dangqingqing 已提交
654 655 656 657 658 659
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
G
GaoWei8 已提交
660 661 662 663 664 665 666 667 668 669 670
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size(),
                      platform::errors::InvalidArgument(
                          "The size of kernel and pads should be equal. But "
                          "received size of kernel is %d, size of pads is %d.",
                          kernel.size(), pads.size()));
    PADDLE_ENFORCE_EQ(
        kernel.size(), strides.size(),
        platform::errors::InvalidArgument(
            "The size of kernel and strides should be equal. But "
            "received size of kernel is %d, size of strides is %d.",
            kernel.size(), strides.size()));
671
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
672
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
673 674
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
675
    return desc_;
D
dangqingqing 已提交
676 677 678 679 680 681 682
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

W
whs 已提交
683 684 685
class ScopedSpatialTransformerDescriptor {
 public:
  ScopedSpatialTransformerDescriptor() {
686 687
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
W
whs 已提交
688
  }
Z
Zeng Jinle 已提交
689
  ~ScopedSpatialTransformerDescriptor() PADDLE_MAY_THROW {
690 691
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
W
whs 已提交
692 693 694 695 696
  }

  template <typename T>
  inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
                                                        const int dimA[]) {
697
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetSpatialTransformerNdDescriptor(
W
whs 已提交
698 699 700 701 702 703 704 705 706
        desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
    return desc_;
  }

 private:
  cudnnSpatialTransformerDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
};

Q
qingqing01 已提交
707 708 709
class ScopedActivationDescriptor {
 public:
  ScopedActivationDescriptor() {
710 711
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateActivationDescriptor(&desc_));
Q
qingqing01 已提交
712
  }
Z
Zeng Jinle 已提交
713
  ~ScopedActivationDescriptor() PADDLE_MAY_THROW {
714 715
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyActivationDescriptor(desc_));
Q
qingqing01 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  }

  template <typename T>
  inline cudnnActivationDescriptor_t descriptor(
      const std::string& act, double value_max = static_cast<double>(0.)) {
    double relu_ceiling = 0.0;
    ActivationMode activation_mode = StringToActivationMode(act);
    cudnnActivationMode_t mode;
    switch (activation_mode) {
#if CUDNN_VERSION >= 7100
      case ActivationMode::kNone:
        mode = CUDNN_ACTIVATION_IDENTITY;
        break;
#endif
      case ActivationMode::kRelu6:
        relu_ceiling = 6.0;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kReluX:
        relu_ceiling = value_max;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kRelu:
        mode = CUDNN_ACTIVATION_RELU;
        break;
      case ActivationMode::kSigmoid:
        mode = CUDNN_ACTIVATION_SIGMOID;
        break;
      case ActivationMode::kTanh:
        mode = CUDNN_ACTIVATION_TANH;
        break;
      default:
G
GaoWei8 已提交
748 749 750
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unrecognized CUDNN activation mode: %d.",
            static_cast<int>(activation_mode)));
Q
qingqing01 已提交
751
    }
752
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetActivationDescriptor(
Q
qingqing01 已提交
753 754 755 756 757 758 759 760 761
        desc_, mode, CUDNN_NOT_PROPAGATE_NAN, relu_ceiling));
    return desc_;
  }

 private:
  cudnnActivationDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedActivationDescriptor);
};

762 763 764 765 766
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
767
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
768 769 770 771 772 773
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

W
Wu Yi 已提交
774 775 776 777
#if CUDNN_VERSION >= 7001
class ScopedCTCLossDescriptor {
 public:
  ScopedCTCLossDescriptor() {
778
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateCTCLossDescriptor(&desc_));
W
Wu Yi 已提交
779
  }
Z
Zeng Jinle 已提交
780
  ~ScopedCTCLossDescriptor() PADDLE_MAY_THROW {
781
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyCTCLossDescriptor(desc_));
W
Wu Yi 已提交
782 783 784 785
  }

  template <typename T>
  inline cudnnCTCLossDescriptor_t descriptor() {
786
    PADDLE_ENFORCE_CUDA_SUCCESS(
W
Wu Yi 已提交
787 788 789 790 791 792 793 794 795 796
        dynload::cudnnSetCTCLossDescriptor(desc_, CudnnDataType<T>::type));
    return desc_;
  }

 private:
  cudnnCTCLossDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor);
};
#endif

D
dangqingqing 已提交
797 798
}  // namespace platform
}  // namespace paddle