elementwise_mul_op.cc 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16

17
#include <memory>
S
sneaxiy 已提交
18
#include <string>
19

W
Wu Yi 已提交
20
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
21
#include "paddle/fluid/platform/complex.h"
22 23 24
#include "paddle/fluid/prim/api/manual/backward/composite_backward_api.h"
#include "paddle/fluid/prim/utils/static/composite_grad_desc_maker.h"
#include "paddle/fluid/prim/utils/static/desc_tensor.h"
S
sneaxiy 已提交
25 26 27

namespace paddle {
namespace operators {
28 29 30 31 32 33
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Mul"; }
  std::string GetEquation() const override { return "Out = X \\\\odot Y"; }

  void AddInputX() override {
34 35 36 37
    AddInput(
        "X",
        "(Variable), Tensor or phi::DenseTensor of any dimensions. Its dtype "
        "should be int32, int64, float32, float64.");
38 39 40
  }

  void AddInputY() override {
41 42 43 44
    AddInput(
        "Y",
        "(Variable), Tensor or phi::DenseTensor of any dimensions. Its dtype "
        "should be int32, int64, float32, float64.");
45 46 47 48 49 50 51
  }

  std::string GetOpFuntionality() const override {
    return "Multiply two tensors element-wise";
  }
};

H
hong 已提交
52 53
template <typename T>
class ElementwiseMulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
54
 public:
H
hong 已提交
55
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
56 57

 protected:
58
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
59
    op->SetType("elementwise_mul_grad");
H
hong 已提交
60 61 62 63 64 65
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
S
sneaxiy 已提交
66 67 68
  }
};

69 70 71
class ElementwiseMulCompositeGradOpMaker
    : public prim::CompositeGradOpMakerBase {
  using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

 public:
  void Apply() override {
    auto x = this->GetSingleForwardInput("X");
    auto y = this->GetSingleForwardInput("Y");
    auto out_grad = this->GetSingleOutputGrad("Out");
    auto x_grad = this->GetSingleInputGrad("X");
    auto x_grad_p = this->GetOutputPtr(&x_grad);
    auto x_grad_name = this->GetOutputName(x_grad);
    auto y_grad = this->GetSingleInputGrad("Y");
    auto y_grad_p = this->GetOutputPtr(&y_grad);
    auto y_grad_name = this->GetOutputName(y_grad);
    prim::multiply_grad<prim::DescTensor>(
        x,
        y,
        out_grad,
        static_cast<int>(this->Attr<int>("axis")),
        x_grad_p,
        y_grad_p);
J
Jiabin Yang 已提交
91
    VLOG(3) << "Runing mul_grad composite func";
92 93 94 95 96
    this->RecoverOutputName(x_grad, x_grad_name);
    this->RecoverOutputName(y_grad, y_grad_name);
  }
};

H
hong 已提交
97 98
template <typename T>
class ElementwiseMulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
99
 public:
H
hong 已提交
100
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
101 102

 protected:
103
  void Apply(GradOpPtr<T> op) const override {
104
    op->SetType("elementwise_mul_grad_grad");
H
hong 已提交
105 106 107 108 109
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
110

H
hong 已提交
111
    op->SetAttrMap(this->Attrs());
112

H
hong 已提交
113 114 115
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
116 117 118
  }
};

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
template <typename T>
class ElementwiseMulTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elementwise_mul_triple_grad");
    // get input from double grad
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("D_DY", this->OutputGrad(framework::GradVarName("Y")));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    op->SetAttrMap(this->Attrs());

    // set outputs
    op->SetOutput("D_X", this->InputGrad("X"));
    op->SetOutput("D_Y", this->InputGrad("Y"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDX", this->InputGrad("DDX"));
    op->SetOutput("D_DDY", this->InputGrad("DDY"));
  }
};

S
sneaxiy 已提交
148 149 150
}  // namespace operators
}  // namespace paddle

151
namespace ops = paddle::operators;
152 153 154 155
REGISTER_OPERATOR(elementwise_mul,
                  ops::ElementwiseMulOp,
                  ops::ElementwiseMulOpMaker,
                  ops::ElementwiseOpInferVarType,
H
hong 已提交
156
                  ops::ElementwiseMulOpGradMaker<paddle::framework::OpDesc>,
157
                  ops::ElementwiseMulOpGradMaker<paddle::imperative::OpBase>,
158
                  ops::ElementwiseMulCompositeGradOpMaker);
H
hong 已提交
159
REGISTER_OPERATOR(
160 161
    elementwise_mul_grad,
    ops::ElementwiseOpGrad,
H
hong 已提交
162 163 164
    ops::ElementwiseMulDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseMulDoubleGradMaker<paddle::imperative::OpBase>);

165
REGISTER_OPERATOR(
166 167
    elementwise_mul_grad_grad,
    ops::ElementwiseOpDoubleGrad,
168 169 170 171 172
    ops::ElementwiseDoubleGradOpInplaceInferer,
    ops::ElementwiseMulTripleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseMulTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(elementwise_mul_triple_grad, ops::ElementwiseOpTripleGrad);
S
sneaxiy 已提交
173

174 175 176 177 178 179 180 181
REGISTER_OP_VERSION(elementwise_mul)
    .AddCheckpoint(
        R"ROC(Register elementwise_mul for adding the attribute of Scale_y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_y",
            "In order to support the function of scaling the input Y when "
            "using the operator of elementwise_mul.",
            1.0f));