system_allocator.cc 16.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#define GLOG_NO_ABBREVIATED_SEVERITIES
15

Y
Yi Wang 已提交
16
#include "paddle/fluid/memory/detail/system_allocator.h"
17

18 19
#include "paddle/fluid/memory/stats.h"

D
dzhwinter 已提交
20 21
#ifdef _WIN32
#include <malloc.h>
22 23 24
#ifndef NOMINMAX
#define NOMINMAX  // msvc max/min macro conflict with std::min/max
#endif
D
dzhwinter 已提交
25 26
#include <windows.h>  // VirtualLock/VirtualUnlock
#else
27
#include <sys/mman.h>  // for mlock and munlock
D
dzhwinter 已提交
28
#endif
29
#include "gflags/gflags.h"
30
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/cpu_info.h"
32
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
33
#include "paddle/fluid/platform/device/npu/npu_info.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/platform/enforce.h"
F
fwenguang 已提交
35 36 37
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif
38

39
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
40 41
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
42

43 44
#include "paddle/fluid/platform/device/device_wrapper.h"

S
sneaxiy 已提交
45
DECLARE_bool(use_pinned_memory);
46
DECLARE_double(fraction_of_gpu_memory_to_use);
47 48
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
Z
zhhsplendid 已提交
49

50 51 52 53
namespace paddle {
namespace memory {
namespace detail {

D
dzhwinter 已提交
54
void* AlignedMalloc(size_t size) {
G
gongweibao 已提交
55
  void* p = nullptr;
D
dzhwinter 已提交
56
  size_t alignment = 32ul;
T
tensor-tang 已提交
57
#ifdef PADDLE_WITH_MKLDNN
58
  // refer to https://github.com/01org/mkl-dnn/blob/master/include/dnnl.hpp
59
  // memory alignment
D
dzhwinter 已提交
60 61 62 63
  alignment = 4096ul;
#endif
#ifdef _WIN32
  p = _aligned_malloc(size, alignment);
64
#else
65 66 67 68 69
  int error = posix_memalign(&p, alignment, size);
  PADDLE_ENFORCE_EQ(
      error, 0,
      platform::errors::ResourceExhausted(
          "Fail to alloc memory of %ld size, error code is %d.", size, error));
70
#endif
71 72
  PADDLE_ENFORCE_NOT_NULL(p, platform::errors::ResourceExhausted(
                                 "Fail to alloc memory of %ld size.", size));
D
dzhwinter 已提交
73 74 75 76 77 78 79 80 81 82 83 84
  return p;
}

void* CPUAllocator::Alloc(size_t* index, size_t size) {
  // According to http://www.cplusplus.com/reference/cstdlib/malloc/,
  // malloc might not return nullptr if size is zero, but the returned
  // pointer shall not be dereferenced -- so we make it nullptr.
  if (size <= 0) return nullptr;

  *index = 0;  // unlock memory

  void* p = AlignedMalloc(size);
85 86 87

  if (p != nullptr) {
    if (FLAGS_use_pinned_memory) {
Y
Yi Wang 已提交
88
      *index = 1;
D
dzhwinter 已提交
89 90 91
#ifdef _WIN32
      VirtualLock(p, size);
#else
92
      mlock(p, size);  // lock memory
D
dzhwinter 已提交
93
#endif
94
    }
95
  }
96

97 98
  HOST_MEMORY_STAT_UPDATE(Reserved, 0, size);

99 100 101
  return p;
}

L
liaogang 已提交
102
void CPUAllocator::Free(void* p, size_t size, size_t index) {
103
  if (p != nullptr && index == 1) {
D
dzhwinter 已提交
104 105 106
#ifdef _WIN32
    VirtualUnlock(p, size);
#else
107
    munlock(p, size);
D
dzhwinter 已提交
108
#endif
109
  }
P
peizhilin 已提交
110 111 112
#ifdef _WIN32
  _aligned_free(p);
#else
113
  free(p);
P
peizhilin 已提交
114
#endif
115 116

  HOST_MEMORY_STAT_UPDATE(Reserved, 0, -size);
117 118
}

L
liaogang 已提交
119
bool CPUAllocator::UseGpu() const { return false; }
L
liaogang 已提交
120

121
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
122

Y
Yi Wang 已提交
123
void* GPUAllocator::Alloc(size_t* index, size_t size) {
124 125
  // CUDA documentation doesn't explain if cudaMalloc returns nullptr
  // if size is 0.  We just make sure it does.
L
liaogang 已提交
126
  if (size <= 0) return nullptr;
Y
Yu Yang 已提交
127

128
  void* p;
129
  auto result = platform::RecordedGpuMalloc(&p, size, gpu_id_);
Y
Yu Yang 已提交
130

131
  if (result == gpuSuccess) {
Y
Yi Wang 已提交
132
    *index = 0;
133
    gpu_alloc_size_ += size;
L
liaogang 已提交
134
    return p;
135
  } else {
136
    size_t avail, total, actual_avail, actual_total;
137
    bool is_limited = platform::RecordedGpuMemGetInfo(
138
        &avail, &total, &actual_avail, &actual_total, gpu_id_);
139
    size_t allocated = total - avail;
140 141 142 143 144 145 146 147 148 149 150

    std::string err_msg;
    if (is_limited) {
      auto limit_size = (total >> 20);
      err_msg = string::Sprintf(
          "\n   3) Set environment variable `FLAGS_gpu_memory_limit_mb` to a "
          "larger value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the "
          "maximum GPU memory usage is limited to %d MB.\n"
          "      The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
          limit_size, limit_size);
    }
151

152
    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
153
        "\n\nOut of memory error on GPU %d. "
154
        "Cannot allocate %s memory on GPU %d, %s memory has been allocated and "
155 156 157 158 159 160 161 162
        "available memory is only %s.\n\n"
        "Please check whether there is any other process using GPU %d.\n"
        "1. If yes, please stop them, or start PaddlePaddle on another GPU.\n"
        "2. If no, please try one of the following suggestions:\n"
        "   1) Decrease the batch size of your model.\n"
        "   2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
        "please set it to a higher value but less than 1.0.\n"
        "      The command is "
163
        "`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.%s\n\n",
164
        gpu_id_, string::HumanReadableSize(size), gpu_id_,
165 166
        string::HumanReadableSize(allocated), string::HumanReadableSize(avail),
        gpu_id_, FLAGS_fraction_of_gpu_memory_to_use, err_msg));
L
liaogang 已提交
167
  }
168 169
}

L
liaogang 已提交
170
void GPUAllocator::Free(void* p, size_t size, size_t index) {
171 172 173 174 175 176 177
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(gpu_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, gpu_alloc_size_));
178
  gpu_alloc_size_ -= size;
179

180
  platform::RecordedGpuFree(p, size, gpu_id_);
181 182
}

L
liaogang 已提交
183
bool GPUAllocator::UseGpu() const { return true; }
L
liaogang 已提交
184

C
chengduoZH 已提交
185 186
// PINNED memory allows direct DMA transfers by the GPU to and from system
// memory. It’s locked to a physical address.
Y
Yi Wang 已提交
187
void* CUDAPinnedAllocator::Alloc(size_t* index, size_t size) {
C
chengduoZH 已提交
188
  if (size <= 0) return nullptr;
C
chengduoZH 已提交
189

190
  // NOTE: here, we use CUDAPinnedMaxAllocSize as the maximum memory size
C
chengduoZH 已提交
191
  // of host pinned allocation. Allocates too much would reduce
C
chengduoZH 已提交
192
  // the amount of memory available to the underlying system for paging.
C
chengduoZH 已提交
193
  size_t usable =
194
      paddle::platform::CUDAPinnedMaxAllocSize() - cuda_pinnd_alloc_size_;
C
chengduoZH 已提交
195

C
chengduoZH 已提交
196 197 198 199 200 201
  if (size > usable) {
    LOG(WARNING) << "Cannot malloc " << size / 1024.0 / 1024.0
                 << " MB pinned memory."
                 << ", available " << usable / 1024.0 / 1024.0 << " MB";
    return nullptr;
  }
C
chengduoZH 已提交
202

C
chengduoZH 已提交
203
  void* p;
204 205
// PINNED memory is visible to all CUDA contexts.
#ifdef PADDLE_WITH_HIP
206
  hipError_t result = hipHostMalloc(&p, size, hipHostMallocPortable);
207
#else
D
Dun Liang 已提交
208
  cudaError_t result = cudaHostAlloc(&p, size, cudaHostAllocPortable);
209
#endif
C
chengduoZH 已提交
210

211
  if (result == gpuSuccess) {
Y
Yi Wang 已提交
212
    *index = 1;  // PINNED memory
C
chengduoZH 已提交
213
    cuda_pinnd_alloc_size_ += size;
C
chengduoZH 已提交
214
    return p;
C
chengduoZH 已提交
215
  } else {
D
Dun Liang 已提交
216
    LOG(WARNING) << "cudaHostAlloc failed.";
C
chengduoZH 已提交
217
    return nullptr;
C
chengduoZH 已提交
218 219 220 221 222 223
  }

  return nullptr;
}

void CUDAPinnedAllocator::Free(void* p, size_t size, size_t index) {
224
  gpuError_t err;
225 226 227 228 229 230 231 232
  PADDLE_ENFORCE_EQ(index, 1, platform::errors::InvalidArgument(
                                  "The index should be 1, but got %d", index));

  PADDLE_ENFORCE_GE(cuda_pinnd_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated cuda pinned memory (%d)",
                        size, cuda_pinnd_alloc_size_));
C
chengduoZH 已提交
233
  cuda_pinnd_alloc_size_ -= size;
234 235 236 237 238 239 240 241 242
#ifdef PADDLE_WITH_HIP
  err = hipHostFree(p);
  if (err != hipErrorDeinitialized) {
    PADDLE_ENFORCE_EQ(
        err, hipSuccess,
        platform::errors::Fatal(
            "hipFreeHost failed in GPUPinnedAllocator, error code is %d", err));
  }
#else
C
chengduoZH 已提交
243 244 245
  err = cudaFreeHost(p);

  // Purposefully allow cudaErrorCudartUnloading, because
C
chengduoZH 已提交
246
  // that is returned if you ever call cudaFreeHost after the
C
chengduoZH 已提交
247 248
  // driver has already shutdown. This happens only if the
  // process is terminating, in which case we don't care if
C
chengduoZH 已提交
249
  // cudaFreeHost succeeds.
C
chengduoZH 已提交
250
  if (err != cudaErrorCudartUnloading) {
251 252 253 254 255
    PADDLE_ENFORCE_EQ(
        err, 0,
        platform::errors::Fatal(
            "cudaFreeHost failed in GPUPinnedAllocator, error code is %d",
            err));
C
chengduoZH 已提交
256
  }
257
#endif
C
chengduoZH 已提交
258 259
}

C
chengduoZH 已提交
260
bool CUDAPinnedAllocator::UseGpu() const { return false; }
C
chengduoZH 已提交
261

L
Luo Tao 已提交
262
#endif
263

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
#ifdef PADDLE_WITH_ASCEND_CL
void* NPUAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  void* p;
  auto result = platform::RecordedNPUMalloc(&p, size, npu_id_);

  if (result == ACL_ERROR_NONE) {
    *index = 0;
    npu_alloc_size_ += size;
    return p;
  } else {
    size_t avail, total, actual_avail, actual_total;
    bool is_limited = platform::RecordedNPUMemGetInfo(
        &avail, &total, &actual_avail, &actual_total, npu_id_);

    std::string err_msg;
    if (is_limited) {
      auto limit_size = (total >> 20);
      err_msg = string::Sprintf(
          "\n   3) Set environment variable `FLAGS_gpu_memory_limit_mb` to a "
          "larger value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the "
          "maximum GPU memory usage is limited to %d MB.\n"
          "      The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
          limit_size, limit_size);
    }

    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
        "\n\nOut of memory error on NPU %d. "
        "Cannot allocate %s memory on NPU %d, "
        "available memory is only %s.\n\n"
        "Please check whether there is any other process using NPU %d.\n"
        "1. If yes, please stop them, or start PaddlePaddle on another NPU.\n"
        "2. If no, please try one of the following suggestions:\n"
        "   1) Decrease the batch size of your model.\n"
        "   2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
        "please set it to a higher value but less than 1.0.\n"
        "      The command is "
        "`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.%s\n\n",
        npu_id_, string::HumanReadableSize(size), npu_id_,
        string::HumanReadableSize(avail), npu_id_,
        FLAGS_fraction_of_gpu_memory_to_use, err_msg));
  }
}

void NPUAllocator::Free(void* p, size_t size, size_t index) {
  VLOG(4) << "Free " << p << " size " << size;
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(npu_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, npu_alloc_size_));
  npu_alloc_size_ -= size;

  platform::RecordedNPUFree(p, size, npu_id_);
}

bool NPUAllocator::UseGpu() const { return true; }
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

void* NPUPinnedAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  size_t usable =
      paddle::platform::NPUPinnedMaxAllocSize() - npu_pinnd_alloc_size_;

  if (size > usable) {
    LOG(WARNING) << "Cannot malloc " << size / 1024.0 / 1024.0
                 << " MB pinned memory."
                 << ", available " << usable / 1024.0 / 1024.0 << " MB";
    return nullptr;
  }

  void* p;
  // PINNED memory is visible to all NPU contexts.
340
  auto result = platform::NPUHostMalloc(&p, size);
341 342 343 344 345 346

  if (result == ACL_ERROR_NONE) {
    *index = 1;  // PINNED memory
    npu_pinnd_alloc_size_ += size;
    return p;
  } else {
347
    LOG(WARNING) << "NPUHostMalloc failed.";
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    return nullptr;
  }

  return nullptr;
}

void NPUPinnedAllocator::Free(void* p, size_t size, size_t index) {
  aclError err;
  PADDLE_ENFORCE_EQ(index, 1, platform::errors::InvalidArgument(
                                  "The index should be 1, but got %d", index));

  PADDLE_ENFORCE_GE(npu_pinnd_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated npu pinned memory (%d)",
                        size, npu_pinnd_alloc_size_));
  npu_pinnd_alloc_size_ -= size;
365
  err = platform::NPUHostFree(p);
366 367 368 369 370

  if (err != ACL_ERROR_NONE) {
    PADDLE_ENFORCE_EQ(
        err, 0,
        platform::errors::Fatal(
371
            "NPUHostFree failed in NPUPinnedAllocator, error code is %d", err));
372 373 374 375 376
  }
}

bool NPUPinnedAllocator::UseGpu() const { return false; }

377 378
#endif

F
fwenguang 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
#ifdef PADDLE_WITH_MLU
void* MLUAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  void* p;
  auto result = platform::RecordedMLUMalloc(&p, size, mlu_id_);

  if (result == cnrtSuccess) {
    *index = 0;
    mlu_alloc_size_ += size;
    return p;
  } else {
    size_t avail, total, actual_avail, actual_total;
    bool is_limited = platform::RecordedMLUMemGetInfo(
        &avail, &total, &actual_avail, &actual_total, mlu_id_);
    size_t allocated = total - avail;

    std::string err_msg;
    if (is_limited) {
      auto limit_size = (total >> 20);
      err_msg = string::Sprintf(
          "\n   3) Set environment variable `FLAGS_gpu_memory_limit_mb` to a "
          "larger value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the "
          "maximum MLU memory usage is limited to %d MB.\n"
          "      The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
          limit_size, limit_size);
    }

    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
        "\n\nOut of memory error on MLU %d. "
        "Cannot allocate %s memory on MLU %d, %s memory has been allocated and "
        "available memory is only %s.\n\n"
        "Please check whether there is any other process using MLU %d.\n"
        "1. If yes, please stop them, or start PaddlePaddle on another MLU.\n"
        "2. If no, please try one of the following suggestions:\n"
        "   1) Decrease the batch size of your model.\n"
        "   2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
        "please set it to a higher value but less than 1.0.\n"
        "      The command is "
        "`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.%s\n\n",
        mlu_id_, string::HumanReadableSize(size), mlu_id_,
        string::HumanReadableSize(allocated), string::HumanReadableSize(avail),
        mlu_id_, FLAGS_fraction_of_gpu_memory_to_use, err_msg));
  }
}

void MLUAllocator::Free(void* p, size_t size, size_t index) {
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(mlu_alloc_size_, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, mlu_alloc_size_));
  mlu_alloc_size_ -= size;

  platform::RecordedMLUFree(p, size, mlu_id_);
}

bool MLUAllocator::UseGpu() const { return true; }
#endif

441 442 443 444 445 446
#ifdef PADDLE_WITH_CUSTOM_DEVICE
void* CustomAllocator::Alloc(size_t* index, size_t size) {
  if (size <= 0) return nullptr;

  void* p;
  auto place = platform::CustomPlace(dev_type_, dev_id_);
447
  auto device = phi::DeviceManager::GetDeviceWithPlace(place);
448 449 450 451 452 453 454 455
  p = device->MemoryAllocate(size);
  if (LIKELY(p)) {
    VLOG(4) << "CustomAllocator::Alloc " << p << " size " << size;
    *index = 0;
    plug_alloc_size += size;
  } else {
    size_t avail, total;

456
    phi::DeviceManager::MemoryStats(place, &total, &avail);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
        "\n\nOut of memory error on %s %d. "
        "total memory is %s, used memory is %s, "
        "available memory is only %s.\n\n",
        dev_type_, dev_id_, string::HumanReadableSize(total),
        string::HumanReadableSize(total - avail),
        string::HumanReadableSize(avail)));
  }
  return p;
}

void CustomAllocator::Free(void* p, size_t size, size_t index) {
  VLOG(4) << "CustomAllocator::Free " << p << " size " << size;
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The index should be 0, index is %d", index));
  PADDLE_ENFORCE_GE(plug_alloc_size, size,
                    platform::errors::InvalidArgument(
                        "The size of memory (%d) to free exceeds the size of "
                        "allocated gpu memory (%d)",
                        size, plug_alloc_size));
  plug_alloc_size -= size;
  auto place = platform::CustomPlace(dev_type_, dev_id_);
479
  auto device = phi::DeviceManager::GetDeviceWithPlace(place);
480 481 482 483 484 485
  device->MemoryDeallocate(p, size);
}

bool CustomAllocator::UseGpu() const { return true; }
#endif

486 487 488
}  // namespace detail
}  // namespace memory
}  // namespace paddle