fused_seqpool_cvm_op.cc 11.1 KB
Newer Older
D
danleifeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fused/fused_seqpool_cvm_op.h"
16

D
danleifeng 已提交
17 18 19 20 21 22 23 24 25
#include <string>
namespace paddle {
namespace operators {

class FusedSeqpoolCVMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_GE(
26 27
        ctx->Inputs("X").size(),
        1UL,
D
danleifeng 已提交
28 29 30
        platform::errors::InvalidArgument(
            "Inputs(X) of FusedSeqpoolCVMOp should not be empty."));
    PADDLE_ENFORCE_GE(
31 32
        ctx->Outputs("Out").size(),
        1UL,
D
danleifeng 已提交
33 34 35 36 37
        platform::errors::InvalidArgument(
            "Outputs(Out) of FusedSeqpoolCVMOp should not be empty."));

    auto cvm_dims = ctx->GetInputDim("CVM");
    PADDLE_ENFORCE_EQ(
38 39
        cvm_dims.size(),
        2UL,
D
danleifeng 已提交
40
        platform::errors::InvalidArgument("Input(CVM)'s rank should be 2."));
41
    PADDLE_ENFORCE_EQ(
42 43
        cvm_dims[1],
        2UL,
44 45
        platform::errors::InvalidArgument("The 2nd dimension of "
                                          "Input(CVM) should be 2."));
D
danleifeng 已提交
46 47 48 49 50 51 52 53

    auto ins_dims = ctx->GetInputsDim("X");
    const int cvm_offset = ctx->Attrs().Get<int>("cvm_offset");
    const size_t num_inputs = ins_dims.size();
    std::vector<framework::DDim> outs_dims;
    outs_dims.resize(num_inputs);
    bool use_cvm = ctx->Attrs().Get<bool>("use_cvm");

54 55
    PADDLE_ENFORCE_GT(num_inputs,
                      0UL,
D
danleifeng 已提交
56 57 58 59 60 61 62
                      platform::errors::InvalidArgument(
                          "Input tensors count should be greater than 0, "
                          "but received value is %d.",
                          num_inputs));

    // The output height should be confirmed in Compute,
    // since input lod is not accessible here.
63 64
    PADDLE_ENFORCE_EQ(ins_dims[0].size(),
                      2,
D
danleifeng 已提交
65 66 67 68 69
                      platform::errors::InvalidArgument(
                          "The dims size of first input should be equal to 2, "
                          "but received value is %d.",
                          ins_dims[0].size()));

P
pangengzheng 已提交
70 71 72 73 74 75 76 77 78 79 80
    if (ctx->IsRuntime()) {
      int batch_size = -1;
      auto inputs_tensor = ctx->GetInputVarPtrs("X");
      for (size_t i = 0; i < num_inputs; ++i) {
        const auto dims = ins_dims[i];
        int rank = dims.size();
        int cur_batch_size = 0;
        framework::Variable* x_var =
            PADDLE_GET(framework::Variable*, inputs_tensor[i]);
        const auto& x_tensor = x_var->Get<phi::DenseTensor>();
        const auto& x_lod = x_tensor.lod();
81
        if (!x_lod.empty()) {
P
pangengzheng 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
          cur_batch_size = x_lod[0].size() - 1;
        } else {
          cur_batch_size = x_tensor.dims()[0];
        }
        if (batch_size == -1) {
          batch_size = cur_batch_size;
        } else {
          PADDLE_ENFORCE_EQ(batch_size,
                            cur_batch_size,
                            platform::errors::PreconditionNotMet(
                                "The batch size of all input should be same, "
                                "please check, last batch_size is %d, current "
                                "batch_size is %d",
                                batch_size,
                                cur_batch_size));
        }
        std::vector<int64_t> out_dim;
        if (use_cvm) {
          out_dim = {batch_size, dims[rank - 1]};
        } else {
          out_dim = {batch_size, dims[rank - 1] - cvm_offset};
        }
        outs_dims[i] = phi::make_ddim(out_dim);
D
danleifeng 已提交
105
      }
P
pangengzheng 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    } else {
      for (size_t i = 0; i < num_inputs; ++i) {
        const auto dims = ins_dims[i];
        int rank = dims.size();
        if (use_cvm) {
          PADDLE_ENFORCE_GT(
              dims[rank - 1],
              2,
              platform::errors::InvalidArgument(
                  "Shape error in %lu id, the last dimension(embedding) of the "
                  "'X' tensor must be larger than 2.",
                  i));
        }
        // input lod is not accessible here
        std::vector<int64_t> out_dim;
        if (use_cvm) {
          out_dim = {-1, dims[rank - 1]};
        } else {
          out_dim = {-1, dims[rank - 1] - cvm_offset};
        }
        outs_dims[i] = phi::make_ddim(out_dim);
D
danleifeng 已提交
127 128 129 130 131 132 133
      }
    }
    ctx->SetOutputsDim("Out", outs_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
134
  phi::KernelKey GetExpectedKernelType(
D
danleifeng 已提交
135
      const framework::ExecutionContext& ctx) const override {
136
    auto inputs = ctx.MultiInput<phi::DenseTensor>("X");
D
danleifeng 已提交
137 138 139 140 141 142 143 144 145
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
    for (auto* input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
        input_data_type = framework::TransToProtoVarType(input->dtype());
        flag = 1;
        break;
      }
    }
146 147
    PADDLE_ENFORCE_EQ(flag,
                      1,
D
danleifeng 已提交
148 149
                      platform::errors::InvalidArgument(
                          "All Inputs of fused_seqpool_cvm OP are Empty!"));
150 151
    return phi::KernelKey(input_data_type, ctx.GetPlace());
    // return phi::KernelKey(framework::proto::VarType::FP32,
D
danleifeng 已提交
152
    //                                ctx.device_context());
153
    // return phi::KernelKey(
D
danleifeng 已提交
154 155 156 157 158 159 160 161
    //   OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class FusedSeqpoolCVMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
162
             "(vector<phi::DenseTensor>) The input tensors of"
D
danleifeng 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
             " operator.")
        .AsDuplicable();
    AddInput("CVM",
             "(Tensor),  a 2-D Tensor with shape [N x 2], where N is the batch "
             "size, 2 is show and click.");
    AddOutput("Out",
              "(vector<Tensor>) The output of Op does not contain LoD "
              "information.")
        .AsDuplicable();
    AddAttr<std::string>("pooltype",
                         "(string, default 'SUM') the pooling pooltype of "
                         "SequencePoolOp, only support SUM now.")
        .SetDefault("SUM")
        .InEnum({"SUM"});
    AddAttr<float>("pad_value",
                   "(float, default 0.0) The value to pad for empty sequence.")
        .SetDefault(0.0);
    AddAttr<bool>("use_cvm", "bool, use cvm or not").SetDefault(true);
    AddAttr<int>("cvm_offset", "(int, default 2)").SetDefault(2);

    AddComment(R"DOC(
Fuse multiple pairs of Sequence Pool and CVM Operator.

)DOC");
  }
};

class FusedSeqpoolCVMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto og_dims = ctx->GetInputsDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputsDim("X");
    auto cvm_dims = ctx->GetInputDim("CVM");
    const int cvm_offset = ctx->Attrs().Get<int>("cvm_offset");
    bool use_cvm = ctx->Attrs().Get<bool>("use_cvm");

    PADDLE_ENFORCE_EQ(
202 203
        cvm_dims.size(),
        2,
D
danleifeng 已提交
204 205 206 207
        platform::errors::InvalidArgument("Input(CVM)'s rank should be 2."));

    for (size_t i = 0; i < og_dims.size(); i++) {
      PADDLE_ENFORCE_EQ(
208 209
          og_dims[i].size(),
          x_dims[i].size(),
D
danleifeng 已提交
210 211 212
          platform::errors::InvalidArgument(
              "The rank of output grad must equal to Input(X). But "
              "received: input rank %u, input shape [%s].",
213 214
              og_dims[i].size(),
              og_dims[i]));
D
danleifeng 已提交
215 216 217
      if (use_cvm) {
        auto o_dim = og_dims[i][og_dims[i].size() - 1];
        PADDLE_ENFORCE_EQ(
218 219
            o_dim,
            x_dims[i][og_dims[i].size() - 1],
D
danleifeng 已提交
220 221 222 223 224
            platform::errors::InvalidArgument(
                "The dimension mismatch between Input(OUT@GRAD) and "
                "Input(X). Received Input(OUT@GRAD): input rank %u, "
                "input shape [%s]; received Input(X): input rank %u, "
                "input shape [%s].",
225 226 227 228
                og_dims[i].size(),
                og_dims[i],
                x_dims[i].size(),
                x_dims[i]));
D
danleifeng 已提交
229 230 231 232 233 234 235 236 237
      } else {
        PADDLE_ENFORCE_EQ(
            og_dims[i][og_dims[i].size() - 1],
            x_dims[i][og_dims[i].size() - 1] - cvm_offset,
            platform::errors::InvalidArgument(
                "The dimension mismatch between Input(OUT@GRAD) and "
                "Input(X). Received Input(OUT@GRAD): input rank %u, "
                "input shape [%s]; received Input(X): input rank %u, "
                "input shape [%s].",
238 239 240 241
                og_dims[i].size(),
                og_dims[i],
                x_dims[i].size(),
                x_dims[i]));
D
danleifeng 已提交
242 243 244 245 246 247 248 249 250
      }
    }
    for (size_t i = 0; i < x_dims.size(); ++i) {
      ctx->ShareLoD("X", framework::GradVarName("X"), i, i);
      ctx->ShareDim("X", framework::GradVarName("X"), i, i);
    }
  }

 protected:
251
  phi::KernelKey GetExpectedKernelType(
D
danleifeng 已提交
252
      const framework::ExecutionContext& ctx) const override {
253 254 255
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(
                              ctx, framework::GradVarName("Out")),
                          ctx.GetPlace());
D
danleifeng 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
  }
};

template <typename T>
class FusedSeqpoolCVMGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op_desc_ptr) const override {
    op_desc_ptr->SetType("fused_seqpool_cvm_grad");
    op_desc_ptr->SetInput("X", this->Input("X"));
    op_desc_ptr->SetInput("CVM", this->Input("CVM"));

    op_desc_ptr->SetInput(framework::GradVarName("Out"),
                          this->OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"),
                           this->InputGrad("X", false));
    op_desc_ptr->SetOutput(framework::GradVarName("CVM"),
                           this->InputGrad("CVM"));
    op_desc_ptr->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

286 287
REGISTER_OPERATOR(fused_seqpool_cvm,
                  ops::FusedSeqpoolCVMOp,
D
danleifeng 已提交
288 289 290 291 292
                  ops::FusedSeqpoolCVMOpMaker,
                  ops::FusedSeqpoolCVMGradOpMaker<paddle::framework::OpDesc>,
                  ops::FusedSeqpoolCVMGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_seqpool_cvm_grad, ops::FusedSeqpoolCVMGradOp)

293 294 295 296 297 298 299 300 301 302
PD_REGISTER_STRUCT_KERNEL(fused_seqpool_cvm,
                          CPU,
                          ALL_LAYOUT,
                          ops::FusedSeqpoolCVMOpCPUKernel,
                          float) {}
PD_REGISTER_STRUCT_KERNEL(fused_seqpool_cvm_grad,
                          CPU,
                          ALL_LAYOUT,
                          ops::FusedSeqpoolCVMGradOpCPUKernel,
                          float) {}