fused_seqpool_cvm_op.cc 9.5 KB
Newer Older
D
danleifeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fused/fused_seqpool_cvm_op.h"
16

D
danleifeng 已提交
17 18 19 20 21 22 23 24 25
#include <string>
namespace paddle {
namespace operators {

class FusedSeqpoolCVMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_GE(
26 27
        ctx->Inputs("X").size(),
        1UL,
D
danleifeng 已提交
28 29 30
        platform::errors::InvalidArgument(
            "Inputs(X) of FusedSeqpoolCVMOp should not be empty."));
    PADDLE_ENFORCE_GE(
31 32
        ctx->Outputs("Out").size(),
        1UL,
D
danleifeng 已提交
33 34 35 36 37
        platform::errors::InvalidArgument(
            "Outputs(Out) of FusedSeqpoolCVMOp should not be empty."));

    auto cvm_dims = ctx->GetInputDim("CVM");
    PADDLE_ENFORCE_EQ(
38 39
        cvm_dims.size(),
        2UL,
D
danleifeng 已提交
40
        platform::errors::InvalidArgument("Input(CVM)'s rank should be 2."));
41
    PADDLE_ENFORCE_EQ(
42 43
        cvm_dims[1],
        2UL,
44 45
        platform::errors::InvalidArgument("The 2nd dimension of "
                                          "Input(CVM) should be 2."));
D
danleifeng 已提交
46 47 48 49 50 51 52 53

    auto ins_dims = ctx->GetInputsDim("X");
    const int cvm_offset = ctx->Attrs().Get<int>("cvm_offset");
    const size_t num_inputs = ins_dims.size();
    std::vector<framework::DDim> outs_dims;
    outs_dims.resize(num_inputs);
    bool use_cvm = ctx->Attrs().Get<bool>("use_cvm");

54 55
    PADDLE_ENFORCE_GT(num_inputs,
                      0UL,
D
danleifeng 已提交
56 57 58 59 60 61 62
                      platform::errors::InvalidArgument(
                          "Input tensors count should be greater than 0, "
                          "but received value is %d.",
                          num_inputs));

    // The output height should be confirmed in Compute,
    // since input lod is not accessible here.
63 64
    PADDLE_ENFORCE_EQ(ins_dims[0].size(),
                      2,
D
danleifeng 已提交
65 66 67 68 69 70 71 72 73 74
                      platform::errors::InvalidArgument(
                          "The dims size of first input should be equal to 2, "
                          "but received value is %d.",
                          ins_dims[0].size()));

    for (size_t i = 0; i < num_inputs; ++i) {
      const auto dims = ins_dims[i];
      int rank = dims.size();
      if (use_cvm) {
        PADDLE_ENFORCE_GT(
75 76
            dims[rank - 1],
            2,
D
danleifeng 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
            platform::errors::InvalidArgument(
                "Shape error in %lu id, the last dimension(embedding) of the "
                "'X' tensor must be larger than 2.",
                i));
      }
      // input lod is not accessible here
      std::vector<int64_t> out_dim;
      if (use_cvm) {
        out_dim = {-1, dims[rank - 1]};
      } else {
        out_dim = {-1, dims[rank - 1] - cvm_offset};
      }
      outs_dims[i] = phi::make_ddim(out_dim);
    }
    ctx->SetOutputsDim("Out", outs_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
98
    auto inputs = ctx.MultiInput<phi::DenseTensor>("X");
D
danleifeng 已提交
99 100 101 102 103 104 105 106 107
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
    for (auto* input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
        input_data_type = framework::TransToProtoVarType(input->dtype());
        flag = 1;
        break;
      }
    }
108 109
    PADDLE_ENFORCE_EQ(flag,
                      1,
D
danleifeng 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123
                      platform::errors::InvalidArgument(
                          "All Inputs of fused_seqpool_cvm OP are Empty!"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
    // return framework::OpKernelType(framework::proto::VarType::FP32,
    //                                ctx.device_context());
    // return framework::OpKernelType(
    //   OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class FusedSeqpoolCVMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
124
             "(vector<phi::DenseTensor>) The input tensors of"
D
danleifeng 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
             " operator.")
        .AsDuplicable();
    AddInput("CVM",
             "(Tensor),  a 2-D Tensor with shape [N x 2], where N is the batch "
             "size, 2 is show and click.");
    AddOutput("Out",
              "(vector<Tensor>) The output of Op does not contain LoD "
              "information.")
        .AsDuplicable();
    AddAttr<std::string>("pooltype",
                         "(string, default 'SUM') the pooling pooltype of "
                         "SequencePoolOp, only support SUM now.")
        .SetDefault("SUM")
        .InEnum({"SUM"});
    AddAttr<float>("pad_value",
                   "(float, default 0.0) The value to pad for empty sequence.")
        .SetDefault(0.0);
    AddAttr<bool>("use_cvm", "bool, use cvm or not").SetDefault(true);
    AddAttr<int>("cvm_offset", "(int, default 2)").SetDefault(2);

    AddComment(R"DOC(
Fuse multiple pairs of Sequence Pool and CVM Operator.

)DOC");
  }
};

class FusedSeqpoolCVMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto og_dims = ctx->GetInputsDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputsDim("X");
    auto cvm_dims = ctx->GetInputDim("CVM");
    const int cvm_offset = ctx->Attrs().Get<int>("cvm_offset");
    bool use_cvm = ctx->Attrs().Get<bool>("use_cvm");

    PADDLE_ENFORCE_EQ(
164 165
        cvm_dims.size(),
        2,
D
danleifeng 已提交
166 167 168 169
        platform::errors::InvalidArgument("Input(CVM)'s rank should be 2."));

    for (size_t i = 0; i < og_dims.size(); i++) {
      PADDLE_ENFORCE_EQ(
170 171
          og_dims[i].size(),
          x_dims[i].size(),
D
danleifeng 已提交
172 173 174
          platform::errors::InvalidArgument(
              "The rank of output grad must equal to Input(X). But "
              "received: input rank %u, input shape [%s].",
175 176
              og_dims[i].size(),
              og_dims[i]));
D
danleifeng 已提交
177 178 179
      if (use_cvm) {
        auto o_dim = og_dims[i][og_dims[i].size() - 1];
        PADDLE_ENFORCE_EQ(
180 181
            o_dim,
            x_dims[i][og_dims[i].size() - 1],
D
danleifeng 已提交
182 183 184 185 186
            platform::errors::InvalidArgument(
                "The dimension mismatch between Input(OUT@GRAD) and "
                "Input(X). Received Input(OUT@GRAD): input rank %u, "
                "input shape [%s]; received Input(X): input rank %u, "
                "input shape [%s].",
187 188 189 190
                og_dims[i].size(),
                og_dims[i],
                x_dims[i].size(),
                x_dims[i]));
D
danleifeng 已提交
191 192 193 194 195 196 197 198 199
      } else {
        PADDLE_ENFORCE_EQ(
            og_dims[i][og_dims[i].size() - 1],
            x_dims[i][og_dims[i].size() - 1] - cvm_offset,
            platform::errors::InvalidArgument(
                "The dimension mismatch between Input(OUT@GRAD) and "
                "Input(X). Received Input(OUT@GRAD): input rank %u, "
                "input shape [%s]; received Input(X): input rank %u, "
                "input shape [%s].",
200 201 202 203
                og_dims[i].size(),
                og_dims[i],
                x_dims[i].size(),
                x_dims[i]));
D
danleifeng 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
      }
    }
    for (size_t i = 0; i < x_dims.size(); ++i) {
      ctx->ShareLoD("X", framework::GradVarName("X"), i, i);
      ctx->ShareDim("X", framework::GradVarName("X"), i, i);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class FusedSeqpoolCVMGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op_desc_ptr) const override {
    op_desc_ptr->SetType("fused_seqpool_cvm_grad");
    op_desc_ptr->SetInput("X", this->Input("X"));
    op_desc_ptr->SetInput("CVM", this->Input("CVM"));

    op_desc_ptr->SetInput(framework::GradVarName("Out"),
                          this->OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"),
                           this->InputGrad("X", false));
    op_desc_ptr->SetOutput(framework::GradVarName("CVM"),
                           this->InputGrad("CVM"));
    op_desc_ptr->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

248 249
REGISTER_OPERATOR(fused_seqpool_cvm,
                  ops::FusedSeqpoolCVMOp,
D
danleifeng 已提交
250 251 252 253 254 255 256 257 258
                  ops::FusedSeqpoolCVMOpMaker,
                  ops::FusedSeqpoolCVMGradOpMaker<paddle::framework::OpDesc>,
                  ops::FusedSeqpoolCVMGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_seqpool_cvm_grad, ops::FusedSeqpoolCVMGradOp)

REGISTER_OP_CPU_KERNEL(fused_seqpool_cvm,
                       ops::FusedSeqpoolCVMOpCPUKernel<float>)
REGISTER_OP_CPU_KERNEL(fused_seqpool_cvm_grad,
                       ops::FusedSeqpoolCVMGradOpCPUKernel<float>)