layer.html 264.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Layers &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../../genindex.html"/>
        <link rel="search" title="Search" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html"/>
        <link rel="up" title="Model Configuration" href="../model_configs.html"/>
37
        <link rel="next" title="Evaluators" href="evaluators.html"/>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        <link rel="prev" title="Activation" href="activation.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87 88 89
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">API</a></li>
90
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a></li>
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
127
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li>
128 129
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
130
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
131
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/new_layer_en.html">Write New Layers</a></li>
132
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
133 134 135 136
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
137 138 139 140 141 142 143
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">API</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="../model_configs.html">Model Configuration</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="activation.html">Activation</a></li>
<li class="toctree-l3 current"><a class="current reference internal" href="#">Layers</a></li>
144
<li class="toctree-l3"><a class="reference internal" href="evaluators.html">Evaluators</a></li>
145 146 147 148 149 150
<li class="toctree-l3"><a class="reference internal" href="optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
151 152 153 154 155 156
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/dataset.html">Dataset</a></li>
</ul>
</li>
157 158 159
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
</ul>
</li>
160 161 162 163 164
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../../index_en.html">API</a> > </li>
      
        <li><a href="../model_configs.html">Model Configuration</a> > </li>
      
    <li>Layers</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="layers">
<span id="api-v2-layer"></span><h1>Layers<a class="headerlink" href="#layers" title="Permalink to this headline"></a></h1>
<div class="section" id="data-layer">
<h2>Data layer<a class="headerlink" href="#data-layer" title="Permalink to this headline"></a></h2>
<div class="section" id="data">
<span id="api-v2-layer-data"></span><h3>data<a class="headerlink" href="#data" title="Permalink to this headline"></a></h3>
204
<dl class="attribute">
205
<dt>
206 207
<code class="descclassname">paddle.v2.layer.</code><code class="descname">data</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">name</span></code></p>
208 209 210 211 212 213 214 215 216 217
</dd></dl>

</div>
</div>
<div class="section" id="fully-connected-layers">
<h2>Fully Connected Layers<a class="headerlink" href="#fully-connected-layers" title="Permalink to this headline"></a></h2>
<div class="section" id="fc">
<span id="api-v2-layer-fc"></span><h3>fc<a class="headerlink" href="#fc" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
218
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">fc</code></dt>
219 220 221 222
<dd><p>Helper for declare fully connected layer.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">fc</span> <span class="o">=</span> <span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
              <span class="n">size</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
223
              <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">v2</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Linear</span><span class="p">(),</span>
224 225 226 227 228 229 230 231 232 233 234 235 236
              <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
<p>which is equal to:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">mixed</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">1024</span><span class="p">)</span> <span class="k">as</span> <span class="n">fc</span><span class="p">:</span>
    <span class="n">fc</span> <span class="o">+=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
237
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
238
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple</em>) &#8211; The input of this layer.</li>
239
<li><strong>size</strong> (<em>int</em>) &#8211; The layer dimension.</li>
240
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation Type. paddle.v2.activation.Tanh is the default activation.</li>
241
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The Parameter Attribute|list.</li>
242 243 244
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
245
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; Extra Layer config.</li>
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="selective-fc">
<h3>selective_fc<a class="headerlink" href="#selective-fc" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
264
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">selective_fc</code></dt>
265
<dd><p>Selectived fully connected layer. Different from fc, the output
266
of this layer can be sparse. It requires an additional input to indicate
267 268 269
several selected columns for output. If the selected columns is not
specified, selective_fc acts exactly like fc.</p>
<p>The simple usage is:</p>
270
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">sel_fc</span> <span class="o">=</span> <span class="n">selective_fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">v2</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Tanh</span><span class="p">())</span>
271 272 273 274 275 276 277
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
278
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
279
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple</em>) &#8211; The input of this layer.</li>
280 281 282 283 284 285 286 287 288 289 290 291 292 293
<li><strong>select</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The layer to select columns to output. It should be a sparse
binary matrix, and is treated as the mask of selective fc. If
it is not set or set to None, selective_fc acts exactly
like fc.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of this layer, which should be equal to that of
the layer &#8216;select&#8217;.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Tanh is the default activation.</li>
<li><strong>pass_generation</strong> (<em>bool</em>) &#8211; The flag which indicates whether it is during generation.</li>
<li><strong>has_selected_colums</strong> (<em>bool</em>) &#8211; The flag which indicates whether the parameter &#8216;select&#8217;
has been set. True is the default.</li>
<li><strong>mul_ratio</strong> (<em>float</em>) &#8211; A ratio helps to judge how sparse the output is and determine
the computation method for speed consideration.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute. See paddle.v2.attr.ParameterAttribute for
details.</li>
294 295 296 297
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The parameter attribute for bias. If this parameter is set to
False or an object whose type is not paddle.v2.attr.ParameterAttribute,
no bias is defined. If this parameter is set to True,
the bias is initialized to zero.</li>
298 299
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="conv-layers">
<h2>Conv Layers<a class="headerlink" href="#conv-layers" title="Permalink to this headline"></a></h2>
<div class="section" id="conv-operator">
<h3>conv_operator<a class="headerlink" href="#conv-operator" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
321
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">conv_operator</code></dt>
322 323 324
<dd><p>Different from img_conv, conv_op is an Operator, which can be used
in mixed. And conv_op takes two inputs to perform convolution.
The first input is the image and the second is filter kernel. It only
325
supports GPU mode.</p>
326 327 328 329 330 331 332 333 334 335 336 337 338
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">op</span> <span class="o">=</span> <span class="n">conv_operator</span><span class="p">(</span><span class="n">img</span><span class="o">=</span><span class="n">input1</span><span class="p">,</span>
                   <span class="nb">filter</span><span class="o">=</span><span class="n">input2</span><span class="p">,</span>
                   <span class="n">filter_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
                   <span class="n">num_filters</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
                   <span class="n">num_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
<li><strong>img</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input image.</li>
<li><strong>filter</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input filter.</li>
<li><strong>filter_size</strong> (<em>int</em>) &#8211; The dimension of the filter kernel on the x axis.</li>
<li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The dimension of the filter kernel on the y axis.
If the parameter is not set or set to None, it will
set to &#8216;filter_size&#8217; automatically.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; The number of the output channels.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; The number of the input channels. If the parameter is not set
or set to None, it will be automatically set to the channel
number of the &#8216;img&#8217;.</li>
<li><strong>stride</strong> (<em>int</em>) &#8211; The stride on the x axis.</li>
<li><strong>stride_y</strong> (<em>int</em>) &#8211; The stride on the y axis. If the parameter is not set or
set to None, it will be set to &#8216;stride&#8217; automatically.</li>
<li><strong>padding</strong> (<em>int</em>) &#8211; The padding size on the x axis.</li>
<li><strong>padding_y</strong> (<em>int</em>) &#8211; The padding size on the y axis. If the parameter is not set
or set to None, it will be set to &#8216;padding&#8217; automatically.</li>
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A ConvOperator Object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">ConvOperator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="conv-projection">
<h3>conv_projection<a class="headerlink" href="#conv-projection" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
373
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">conv_projection</code></dt>
374 375 376
<dd><p>Different from img_conv and conv_op, conv_projection is a Projection,
which can be used in mixed and concat. It uses cudnn to implement
convolution and only supports GPU mode.</p>
377 378 379 380 381 382 383 384 385 386 387 388
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">conv_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input1</span><span class="p">,</span>
                       <span class="n">filter_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
                       <span class="n">num_filters</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
                       <span class="n">num_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
389
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
<li><strong>filter_size</strong> (<em>int | tuple | list</em>) &#8211; The dimensions of the filter kernel. If the parameter is
set to one integer, the two dimensions on x and y axises
will be same when filter_size_y is not set. If it is set
to a list, the first element indicates the dimension on
the x axis, and the second is used to specify the dimension
on the y axis when filter_size is not provided.</li>
<li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The dimension of the filter kernel on the y axis. If the parameter
is not set, it will be set automatically according to filter_size.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; The number of filters.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; The number of the input channels.</li>
<li><strong>stride</strong> (<em>int | tuple | list</em>) &#8211; The strides. If the parameter is set to one integer, the strides
on x and y axises will be same when stride_y is not set. If it is
set to a list, the first element indicates the stride on the x axis,
and the second is used to specify the stride on the y axis when
stride_y is not provided.</li>
<li><strong>stride_y</strong> (<em>int</em>) &#8211; The stride on the y axis.</li>
<li><strong>padding</strong> (<em>int | tuple | list</em>) &#8211; The padding sizes. If the parameter is set to one integer, the padding
sizes on x and y axises will be same when padding_y is not set. If it
is set to a list, the first element indicates the padding size on the
x axis, and the second is used to specify the padding size on the y axis
when padding_y is not provided.</li>
<li><strong>padding_y</strong> (<em>int</em>) &#8211; The padding size on the y axis.</li>
412
<li><strong>groups</strong> (<em>int</em>) &#8211; The group number.</li>
413 414 415
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute of the convolution. See paddle.v2.attr.ParameterAttribute for
details.</li>
<li><strong>trans</strong> (<em>bool</em>) &#8211; Whether it is ConvTransProjection or ConvProjection</li>
416 417 418
</ul>
</td>
</tr>
419
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A Projection Object.</p>
420 421
</td>
</tr>
422
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">ConvTransProjection | ConvProjection</p>
423 424 425 426 427 428 429 430 431 432 433
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="conv-shift">
<h3>conv_shift<a class="headerlink" href="#conv-shift" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
434
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">conv_shift</code></dt>
435
<dd><dl class="docutils">
436
<dt>This layer performs cyclic convolution on two inputs. For example:</dt>
437 438 439 440 441 442 443 444 445 446
<dd><ul class="first last simple">
<li>a[in]: contains M elements.</li>
<li>b[in]: contains N elements (N should be odd).</li>
<li>c[out]: contains M elements.</li>
</ul>
</dd>
</dl>
<div class="math">
\[c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}\]</div>
<dl class="docutils">
447
<dt>In this formula:</dt>
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
<dd><ul class="first last simple">
<li>a&#8217;s index is computed modulo M. When it is negative, then get item from
the right side (which is the end of array) to the left.</li>
<li>b&#8217;s index is computed modulo N. When it is negative, then get item from
the right size (which is the end of array) to the left.</li>
</ul>
</dd>
</dl>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">conv_shift</span> <span class="o">=</span> <span class="n">conv_shift</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
465
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
466 467 468 469
<li><strong>a</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input of this layer.</li>
<li><strong>b</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The second input of this layer.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="img-conv">
<h3>img_conv<a class="headerlink" href="#img-conv" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
488
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">img_conv</code></dt>
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
<dd><p>Convolution layer for image. Paddle can support both square and non-square
input currently.</p>
<p>The details of convolution layer, please refer UFLDL&#8217;s <a class="reference external" href="http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/">convolution</a> .</p>
<p>Convolution Transpose (deconv) layer for image. Paddle can support both square
and non-square input currently.</p>
<p>The details of convolution transpose layer,
please refer to the following explanation and references therein
&lt;<a class="reference external" href="http://datascience.stackexchange.com/questions/6107/">http://datascience.stackexchange.com/questions/6107/</a>
what-are-deconvolutional-layers/&gt;`_ .
The num_channel means input image&#8217;s channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer&#8217;s
num_filters * num_group.</p>
<p>There are several group of filter in PaddlePaddle implementation.
Each group will process some channel of the inputs. For example, if an input
num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
32*4 = 128 filters to process inputs. The channels will be split into 4
pieces. First 256/4 = 64 channels will process by first 32 filters. The
rest channels will be processed by rest group of filters.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">conv</span> <span class="o">=</span> <span class="n">img_conv</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">filter_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">filter_size_y</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                      <span class="n">num_channels</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
                      <span class="n">num_filters</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                      <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
512
                      <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">v2</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Relu</span><span class="p">())</span>
513 514 515 516 517 518 519
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
520
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
521 522
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
<li><strong>filter_size</strong> (<em>int | tuple | list</em>) &#8211; The x dimension of a filter kernel. Or input a tuple for
523
two image dimension.</li>
524
<li><strong>filter_size_y</strong> (<em>int | None</em>) &#8211; The y dimension of a filter kernel. Since PaddlePaddle
525 526 527
currently supports rectangular filters, the filter&#8217;s
shape will be (filter_size, filter_size_y).</li>
<li><strong>num_filters</strong> &#8211; Each filter group&#8217;s number of filter</li>
528
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Relu is the default activation.</li>
529
<li><strong>groups</strong> (<em>int</em>) &#8211; Group size of filters.</li>
530
<li><strong>stride</strong> (<em>int | tuple | list</em>) &#8211; The x dimension of the stride. Or input a tuple for two image
531 532
dimension.</li>
<li><strong>stride_y</strong> (<em>int</em>) &#8211; The y dimension of the stride.</li>
533
<li><strong>padding</strong> (<em>int | tuple | list</em>) &#8211; The x dimension of the padding. Or input a tuple for two
534 535
image dimension</li>
<li><strong>padding_y</strong> (<em>int</em>) &#8211; The y dimension of the padding.</li>
536
<li><strong>dilation</strong> (<em>int | tuple | list</em>) &#8211; The x dimension of the dilation. Or input a tuple for two
537 538
image dimension</li>
<li><strong>dilation_y</strong> (<em>int</em>) &#8211; The y dimension of the dilation.</li>
539 540 541
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
542 543 544 545 546 547 548
<li><strong>num_channels</strong> (<em>int</em>) &#8211; number of input channels. If None will be set
automatically from previous output.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; Convolution param attribute. None means default attribute</li>
<li><strong>shared_biases</strong> (<em>bool</em>) &#8211; Is biases will be shared between filters or not.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; Layer Extra Attribute.</li>
<li><strong>trans</strong> (<em>bool</em>) &#8211; true if it is a convTransLayer, false if it is a convLayer</li>
<li><strong>layer_type</strong> (<em>String</em>) &#8211; specify the layer_type, default is None. If trans=True,
549 550 551
layer_type has to be &#8220;exconvt&#8221; or &#8220;cudnn_convt&#8221;,
otherwise layer_type has to be either &#8220;exconv&#8221; or
&#8220;cudnn_conv&#8221;</li>
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="context-projection">
<span id="api-v2-layer-context-projection"></span><h3>context_projection<a class="headerlink" href="#context-projection" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
570
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">context_projection</code></dt>
571 572 573 574 575 576 577 578 579 580 581 582 583 584
<dd><p>Context Projection.</p>
<p>It just simply reorganizes input sequence, combines &#8220;context_len&#8221; sequence
to one context from context_start. &#8220;context_start&#8221; will be set to
-(context_len - 1) / 2 by default. If context position out of sequence
length, padding will be filled as zero if padding_attr = False, otherwise
it is trainable.</p>
<p>For example, origin sequence is [A B C D E F G], context len is 3, then
after context projection and not set padding_attr, sequence will
be [ 0AB ABC BCD CDE DEF EFG FG0 ].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
585
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer, which should be a sequence.</li>
586 587 588
<li><strong>context_len</strong> (<em>int</em>) &#8211; context length.</li>
<li><strong>context_start</strong> (<em>int</em>) &#8211; context start position. Default is
-(context_len - 1)/2</li>
589
<li><strong>padding_attr</strong> (<em>bool | paddle.v2.attr.ParameterAttribute</em>) &#8211; Padding Parameter Attribute. If false, it means padding
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
always be zero. Otherwise Padding is learnable, and
parameter attribute is set by this parameter.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Projection</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Projection</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

605 606 607 608 609 610 611
</div>
<div class="section" id="row-conv">
<h3>row_conv<a class="headerlink" href="#row-conv" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">row_conv</code></dt>
<dd><p>The row convolution is called lookahead convolution. It is firstly
612
introduced in paper of <a class="reference external" href="https://arxiv.org/pdf/1512.02595v1.pdf">Deep Speech 2: End-to-End Speech Recognition
613 614 615 616 617 618
in English and Mandarin</a> .</p>
<p>The bidirectional RNN that learns representation for a sequence by
performing a forward and a backward pass through the entire sequence.
However, unlike unidirectional RNNs, bidirectional RNNs are challenging
to deploy in an online and low-latency setting. The lookahead convolution
incorporates information from future subsequences in a computationally
619 620
efficient manner to improve unidirectional RNNs.</p>
<p>The connection of row convolution is different from the 1D sequence
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
convolution. Assumed that, the future context-length is k, that is to say,
it can get the output at timestep t by using the the input feature from t-th
timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
activations are d, the activations r_t for the new layer at time-step t are:</p>
<div class="math">
\[r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
          \quad         ext{for} \quad  (1 \leq i \leq d)\]</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">The <cite>context_len</cite> is <cite>k + 1</cite>. That is to say, the lookahead step
number plus one equals context_len.</p>
</div>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">row_conv</span> <span class="o">=</span> <span class="n">row_conv</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">context_len</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
641
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
642 643
<li><strong>context_len</strong> (<em>int</em>) &#8211; The context length equals the lookahead step number
plus one.</li>
644
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation Type. paddle.v2.activation.Linear is the default activation.</li>
645 646 647 648
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute. See paddle.v2.attr.ParameterAttribute for
details.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
649 650 651 652 653 654 655 656 657 658 659 660 661
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

662 663 664 665 666 667 668 669
</div>
</div>
<div class="section" id="image-pooling-layer">
<h2>Image Pooling Layer<a class="headerlink" href="#image-pooling-layer" title="Permalink to this headline"></a></h2>
<div class="section" id="img-pool">
<h3>img_pool<a class="headerlink" href="#img-pool" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
670
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">img_pool</code></dt>
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
<dd><p>Image pooling Layer.</p>
<p>The details of pooling layer, please refer ufldl&#8217;s <a class="reference external" href="http://ufldl.stanford.edu/tutorial/supervised/Pooling/">pooling</a> .</p>
<ul class="simple">
<li>ceil_mode=True:</li>
</ul>
<div class="math">
\[w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))\]</div>
<ul class="simple">
<li>ceil_mode=False:</li>
</ul>
<div class="math">
\[w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">maxpool</span> <span class="o">=</span> <span class="n">img_pool</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">conv</span><span class="p">,</span>
                         <span class="n">pool_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
                         <span class="n">pool_size_y</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span>
                         <span class="n">num_channels</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
                         <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                         <span class="n">stride_y</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
                         <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                         <span class="n">padding_y</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
                         <span class="n">pool_type</span><span class="o">=</span><span class="n">MaxPooling</span><span class="p">())</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>padding</strong> (<em>int</em>) &#8211; pooling padding width.</li>
703
<li><strong>padding_y</strong> (<em>int | None</em>) &#8211; pooling padding height. It&#8217;s equal to padding by default.</li>
704
<li><strong>name</strong> (<em>basestring.</em>) &#8211; name of pooling layer</li>
705
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
706
<li><strong>pool_size</strong> (<em>int</em>) &#8211; pooling window width</li>
707
<li><strong>pool_size_y</strong> (<em>int | None</em>) &#8211; pooling window height. It&#8217;s eaqual to pool_size by default.</li>
708 709 710 711
<li><strong>num_channels</strong> (<em>int</em>) &#8211; number of input channel.</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; pooling type. MaxPooling or AvgPooling. Default is
MaxPooling.</li>
<li><strong>stride</strong> (<em>int</em>) &#8211; stride width of pooling.</li>
712
<li><strong>stride_y</strong> (<em>int | None</em>) &#8211; stride height of pooling. It is equal to stride by default.</li>
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; Extra Layer attribute.</li>
<li><strong>ceil_mode</strong> (<em>bool</em>) &#8211; Wether to use ceil mode to calculate output height and with.
Defalut is True. If set false, Otherwise use floor.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="spp">
<h3>spp<a class="headerlink" href="#spp" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
734
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">spp</code></dt>
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
<dd><p>Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
The details please refer to
<a class="reference external" href="https://arxiv.org/abs/1406.4729">Kaiming He&#8217;s paper</a>.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">spp</span> <span class="o">=</span> <span class="n">spp</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span>
                <span class="n">pyramid_height</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
                <span class="n">num_channels</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span>
                <span class="n">pool_type</span><span class="o">=</span><span class="n">MaxPooling</span><span class="p">())</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
750
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
751
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
<li><strong>num_channels</strong> (<em>int</em>) &#8211; number of input channel.</li>
<li><strong>pool_type</strong> &#8211; Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.</li>
<li><strong>pyramid_height</strong> (<em>int</em>) &#8211; pyramid height.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="maxout">
<h3>maxout<a class="headerlink" href="#maxout" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
774
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">maxout</code></dt>
775
<dd><dl class="docutils">
776
<dt>A layer to do max out on convolutional layer output.</dt>
777
<dd><ul class="first last simple">
778 779 780
<li>Input: the output of a convolutional layer.</li>
<li>Output: feature map size same as the input&#8217;s, and its channel number is
(input channel) / groups.</li>
781 782 783 784
</ul>
</dd>
</dl>
<p>So groups should be larger than 1, and the num of channels should be able
785 786 787 788 789 790 791 792
to be devided by groups.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Maxout Networks
<a class="reference external" href="http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf">http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf</a>
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
<a class="reference external" href="https://arxiv.org/pdf/1312.6082v4.pdf">https://arxiv.org/pdf/1312.6082v4.pdf</a></dd>
</dl>
793 794 795 796 797 798 799
<div class="math">
\[y_{si+j} = \max_k x_{gsi + sk + j}
g = groups
s = input.size / num_channels
0 \le i &lt; num_channels / groups
0 \le j &lt; s
0 \le k &lt; groups\]</div>
800 801 802 803 804 805 806 807 808 809 810
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">maxout</span> <span class="o">=</span> <span class="n">maxout</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                      <span class="n">num_channels</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
                      <span class="n">groups</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
811
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
812 813 814
<li><strong>num_channels</strong> (<em>int</em>) &#8211; The number of input channels. If the parameter is not set or
set to None, its actual value will be automatically set to
the channels number of the input.</li>
815
<li><strong>groups</strong> (<em>int</em>) &#8211; The group number of input layer.</li>
816 817 818
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
819 820 821 822 823 824 825 826 827 828 829 830 831
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
</div>
<div class="section" id="roi-pool">
<h3>roi_pool<a class="headerlink" href="#roi-pool" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">roi_pool</code></dt>
<dd><p>A layer used by Fast R-CNN to extract feature maps of ROIs from the last
feature map.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; The Layer Name.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer.</em>) &#8211; The input layer.</li>
<li><strong>rois</strong> (<em>paddle.v2.config_base.Layer.</em>) &#8211; The input ROIs&#8217; data.</li>
<li><strong>pooled_width</strong> (<em>int</em>) &#8211; The width after pooling.</li>
<li><strong>pooled_height</strong> (<em>int</em>) &#8211; The height after pooling.</li>
<li><strong>spatial_scale</strong> (<em>float</em>) &#8211; The spatial scale between the image and feature map.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; number of input channel.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

862 863 864 865 866 867 868 869
</div>
</div>
<div class="section" id="norm-layer">
<h2>Norm Layer<a class="headerlink" href="#norm-layer" title="Permalink to this headline"></a></h2>
<div class="section" id="img-cmrnorm">
<h3>img_cmrnorm<a class="headerlink" href="#img-cmrnorm" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
870
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">img_cmrnorm</code></dt>
871 872 873 874 875 876
<dd><p>Response normalization across feature maps.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>ImageNet Classification with Deep Convolutional Neural Networks
<a class="reference external" href="http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf">http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf</a></dd>
</dl>
877 878 879 880 881 882 883 884 885
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">norm</span> <span class="o">=</span> <span class="n">img_cmrnorm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">net</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
886
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
887
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
888 889 890
<li><strong>size</strong> (<em>int</em>) &#8211; Normalize in number of <span class="math">\(size\)</span> feature maps.</li>
<li><strong>scale</strong> (<em>float</em>) &#8211; The hyper-parameter.</li>
<li><strong>power</strong> (<em>float</em>) &#8211; The hyper-parameter.</li>
891 892 893 894 895
<li><strong>num_channels</strong> &#8211; The number of input channels. If the parameter is not set or
set to None, its actual value will be automatically set to
the channels number of the input.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attributes. See paddle.v2.attr.ExtraAttribute for
details.</li>
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="batch-norm">
<h3>batch_norm<a class="headerlink" href="#batch-norm" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
914
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">batch_norm</code></dt>
915
<dd><p>Batch Normalization Layer. The notation of this layer is as follows.</p>
916 917 918 919 920 921 922 923 924
<p><span class="math">\(x\)</span> is the input features over a mini-batch.</p>
<div class="math">
\[\begin{split}\mu_{\beta} &amp;\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &amp;//\
\ mini-batch\ mean \\
\sigma_{\beta}^{2} &amp;\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
\mu_{\beta})^2 \qquad &amp;//\ mini-batch\ variance \\
\hat{x_i} &amp;\gets \frac{x_i - \mu_\beta} {\sqrt{\
\sigma_{\beta}^{2} + \epsilon}} \qquad &amp;//\ normalize \\
y_i &amp;\gets \gamma \hat{x_i} + \beta \qquad &amp;//\ scale\ and\ shift\end{split}\]</div>
925 926 927 928 929 930
<dl class="docutils">
<dt>Reference:</dt>
<dd>Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift
<a class="reference external" href="http://arxiv.org/abs/1502.03167">http://arxiv.org/abs/1502.03167</a></dd>
</dl>
931
<p>The example usage is:</p>
932
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">norm</span> <span class="o">=</span> <span class="n">batch_norm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">net</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">v2</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Relu</span><span class="p">())</span>
933 934 935 936 937 938 939
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
940
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
941
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; This layer&#8217;s input which is to be performed batch normalization on.</li>
942 943 944 945 946 947
<li><strong>batch_norm_type</strong> (<em>None | string</em><em>, </em><em>None</em><em> or </em><em>&quot;batch_norm&quot;</em><em> or </em><em>&quot;cudnn_batch_norm&quot;</em><em>
or </em><em>&quot;mkldnn_batch_norm&quot;</em>) &#8211; We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
requires cuDNN version greater or equal to v4 (&gt;=v4).
But cudnn_batch_norm is faster and needs less
memory than batch_norm. mkldnn_batch_norm requires
948 949
use_mkldnn is enabled. By default (None), we will
automatically select cudnn_batch_norm for GPU,
950
mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
Users can specify the batch norm type. If you use
cudnn_batch_norm, we suggested you use latest version,
such as v5.1.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Relu is the default activation.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; The number of input channels. If the parameter is not set or
set to None, its actual value will be automatically set to
the channels number of the input.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; <span class="math">\(\beta\)</span>. The bias attribute. If the parameter is set to
False or an object whose type is not paddle.v2.attr.ParameterAttribute, no
bias is defined. If the parameter is set to True, the bias is
initialized to zero.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; <span class="math">\(\gamma\)</span>. The parameter attribute. See paddle.v2.attr.ParameterAttribute
for details.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
<li><strong>use_global_stats</strong> (<em>bool | None.</em>) &#8211; Whether use moving mean/variance statistics during
testing peroid. If the parameter is set to None or
True, it will use moving mean/variance statistics
during testing. If the parameter is set to False, it
will use the mean and variance of the current batch
of test data.</li>
<li><strong>moving_average_fraction</strong> (<em>float.</em>) &#8211; Factor used in the moving average computation.
<span class="math">\(runningMean = newMean*(1-factor) + runningMean*factor\)</span></li>
974
<li><strong>mean_var_names</strong> (<em>string list</em>) &#8211; [mean name, variance name]</li>
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="sum-to-one-norm">
<h3>sum_to_one_norm<a class="headerlink" href="#sum-to-one-norm" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
993
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">sum_to_one_norm</code></dt>
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
<dd><p>A layer for sum-to-one normalization,
which is used in NEURAL TURING MACHINE.</p>
<div class="math">
\[out[i] = \frac {in[i]} {\sum_{k=1}^N in[k]}\]</div>
<p>where <span class="math">\(in\)</span> is a (batchSize x dataDim) input vector,
and <span class="math">\(out\)</span> is a (batchSize x dataDim) output vector.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">sum_to_one_norm</span> <span class="o">=</span> <span class="n">sum_to_one_norm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1009
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
1010
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
1011 1012
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute
for details.</li>
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

1026 1027 1028 1029 1030
</div>
<div class="section" id="cross-channel-norm">
<h3>cross_channel_norm<a class="headerlink" href="#cross-channel-norm" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1031
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">cross_channel_norm</code></dt>
1032 1033 1034 1035 1036 1037 1038 1039 1040
<dd><p>Normalize a layer&#8217;s output. This layer is necessary for ssd.
This layer applys normalize across the channels of each sample to
a conv layer&#8217;s output and scale the output by a group of trainable
factors which dimensions equal to the channel&#8217;s number.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1041
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
1042
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The Parameter Attribute|list.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
</div>
<div class="section" id="row-l2-norm">
<h3>row_l2_norm<a class="headerlink" href="#row-l2-norm" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">row_l2_norm</code></dt>
<dd><blockquote>
<div><p>A layer for L2-normalization in each row.</p>
<div class="math">
\[out[i] =\]</div>
</div></blockquote>
<p>rac{in[i]}{sqrt{sum_{k=1}^N in[k]^{2}}}</p>
<blockquote>
<div><p>where the size of <span class="math">\(in\)</span> is (batchSize x dataDim) ,
and the size of <span class="math">\(out\)</span> is a (batchSize x dataDim) .</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">row_l2_norm</span> <span class="o">=</span> <span class="n">row_l2_norm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1077
<tr class="field-odd field"><th class="field-name">param input:</th><td class="field-body">The input of this layer.</td>
1078 1079 1080
</tr>
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
1081
<tr class="field-odd field"><th class="field-name">param name:</th><td class="field-body">The name of this layer. It is optional.</td>
1082 1083 1084 1085
</tr>
<tr class="field-even field"><th class="field-name">type name:</th><td class="field-body">basestring</td>
</tr>
<tr class="field-odd field"><th class="field-name" colspan="2">param layer_attr:</th></tr>
1086 1087
<tr class="field-odd field"><td>&#160;</td><td class="field-body">The extra layer attribute. See paddle.v2.attr.ExtraAttribute
for details.</td>
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
</tr>
<tr class="field-even field"><th class="field-name" colspan="2">type layer_attr:</th></tr>
<tr class="field-even field"><td>&#160;</td><td class="field-body">paddle.v2.attr.ExtraAttribute</td>
</tr>
<tr class="field-odd field"><th class="field-name">return:</th><td class="field-body">paddle.v2.config_base.Layer object.</td>
</tr>
<tr class="field-even field"><th class="field-name">rtype:</th><td class="field-body">paddle.v2.config_base.Layer</td>
</tr>
</tbody>
</table>
</div></blockquote>
</dd></dl>

1101 1102 1103 1104 1105 1106 1107 1108
</div>
</div>
<div class="section" id="recurrent-layers">
<h2>Recurrent Layers<a class="headerlink" href="#recurrent-layers" title="Permalink to this headline"></a></h2>
<div class="section" id="recurrent">
<h3>recurrent<a class="headerlink" href="#recurrent" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1109
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">recurrent</code></dt>
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
<dd><p>Simple recurrent unit layer. It is just a fully connect layer through both
time and neural network.</p>
<p>For each sequence [start, end] it performs the following computation:</p>
<div class="math">
\[\begin{split}out_{i} = act(in_{i})     \      \      \text{for} \ i = start \\
out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start &lt; i &lt;= end\end{split}\]</div>
<p>If reversed is true, the order is reversed:</p>
<div class="math">
\[\begin{split}out_{i} = act(in_{i})           \    \   \text{for} \ i = end  \\
out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start &lt;= i &lt; end\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1125
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
1126
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Tanh is the default activation.</li>
1127 1128 1129 1130
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The parameter attribute for bias. If this parameter is set to
False or an object whose type is not paddle.v2.attr.ParameterAttribute,
no bias is defined. If the parameter is set to True,
the bias is initialized to zero.</li>
1131 1132
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute. See paddle.v2.attr.ParameterAttribute for
details.</li>
1133
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
1134 1135
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="lstmemory">
<h3>lstmemory<a class="headerlink" href="#lstmemory" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1154
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">lstmemory</code></dt>
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
<dd><p>Long Short-term Memory Cell.</p>
<p>The memory cell was implemented as follow equations.</p>
<div class="math">
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
<p>NOTE: In PaddlePaddle&#8217;s implementation, the multiplications
<span class="math">\(W_{xi}x_{t}\)</span> , <span class="math">\(W_{xf}x_{t}\)</span>,
<span class="math">\(W_{xc}x_t\)</span>, <span class="math">\(W_{xo}x_{t}\)</span> are not done in the lstmemory layer,
so an additional mixed with full_matrix_projection or a fc must
be included in the configuration file to complete the input-to-hidden
mappings before lstmemory is called.</p>
<p>NOTE: This is a low level user interface. You can use network.simple_lstm
to config a simple plain lstm layer.</p>
<p>Please refer to <strong>Generating Sequences With Recurrent Neural Networks</strong> for
more details about LSTM.</p>
<p><a class="reference external" href="http://arxiv.org/abs/1308.0850">Link</a> goes as below.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; The lstmemory layer name.</li>
1176
<li><strong>size</strong> (<em>int</em>) &#8211; DEPRECATED. size of the lstm cell</li>
1177
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
1178
<li><strong>reverse</strong> (<em>bool</em>) &#8211; is sequence process reversed or not.</li>
1179
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Tanh is the default activation.</li>
1180 1181
<li><strong>gate_act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; gate activation type, paddle.v2.activation.Sigmoid by default.</li>
<li><strong>state_act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; state activation type, paddle.v2.activation.Tanh by default.</li>
1182 1183 1184
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
1185 1186
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | False</em>) &#8211; Parameter Attribute.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; Extra Layer attribute</li>
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="grumemory">
<h3>grumemory<a class="headerlink" href="#grumemory" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1205
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">grumemory</code></dt>
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
<dd><p>Gate Recurrent Unit Layer.</p>
<p>The memory cell was implemented as follow equations.</p>
<p>1. update gate <span class="math">\(z\)</span>: defines how much of the previous memory to
keep around or the unit updates its activations. The update gate
is computed by:</p>
<div class="math">
\[z_t = \sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)\]</div>
<p>2. reset gate <span class="math">\(r\)</span>: determines how to combine the new input with the
previous memory. The reset gate is computed similarly to the update gate:</p>
<div class="math">
\[r_t = \sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)\]</div>
<p>3. The candidate activation <span class="math">\(\tilde{h_t}\)</span> is computed similarly to
that of the traditional recurrent unit:</p>
<div class="math">
\[{\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)\]</div>
<p>4. The hidden activation <span class="math">\(h_t\)</span> of the GRU at time t is a linear
interpolation between the previous activation <span class="math">\(h_{t-1}\)</span> and the
candidate activation <span class="math">\(\tilde{h_t}\)</span>:</p>
<div class="math">
\[h_t = (1 - z_t) h_{t-1} + z_t {\tilde{h_t}}\]</div>
<p>NOTE: In PaddlePaddle&#8217;s implementation, the multiplication operations
<span class="math">\(W_{r}x_{t}\)</span>, <span class="math">\(W_{z}x_{t}\)</span> and <span class="math">\(W x_t\)</span> are not computed in
gate_recurrent layer. Consequently, an additional mixed with
full_matrix_projection or a fc must be included before grumemory
is called.</p>
<p>More details can be found by referring to <a class="reference external" href="https://arxiv.org/abs/1412.3555">Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling.</a></p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">grumemory</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1242 1243
<li><strong>name</strong> (<em>None | basestring</em>) &#8211; The gru layer name.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer.</em>) &#8211; The input of this layer.</li>
1244
<li><strong>size</strong> (<em>int</em>) &#8211; DEPRECATED. size of the gru cell</li>
1245
<li><strong>reverse</strong> (<em>bool</em>) &#8211; Whether sequence process is reversed or not.</li>
1246
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type, paddle.v2.activation.Tanh is the default. This activation
1247
affects the <span class="math">\({\tilde{h_t}}\)</span>.</li>
1248
<li><strong>gate_act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; gate activation type, paddle.v2.activation.Sigmoid by default.
1249 1250
This activation affects the <span class="math">\(z_t\)</span> and <span class="math">\(r_t\)</span>. It is the
<span class="math">\(\sigma\)</span> in the above formula.</li>
1251 1252 1253
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
1254 1255
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | False</em>) &#8211; Parameter Attribute.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; Extra Layer attribute</li>
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="recurrent-layer-group">
<h2>Recurrent Layer Group<a class="headerlink" href="#recurrent-layer-group" title="Permalink to this headline"></a></h2>
<div class="section" id="memory">
<h3>memory<a class="headerlink" href="#memory" title="Permalink to this headline"></a></h3>
1275
<dl class="class">
1276
<dt>
1277
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">memory</code></dt>
1278 1279 1280 1281 1282 1283 1284
<dd><p>The memory takes a layer&#8217;s output at previous time step as its own output.</p>
<p>If boot_bias, the activation of the bias is the initial value of the memory.</p>
<p>If boot_with_const_id is set, then the memory&#8217;s output at the first time step
is a IndexSlot, the Arguments.ids()[0] is this <code class="code docutils literal"><span class="pre">cost_id</span></code>.</p>
<p>If boot is specified, the memory&#8217;s output at the first time step will
be the boot&#8217;s output.</p>
<p>In other case, the default memory&#8217;s output at the first time step is zero.</p>
1285
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">mem</span> <span class="o">=</span> <span class="n">memory</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;state&#39;</span><span class="p">)</span>
1286
<span class="n">state</span> <span class="o">=</span> <span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">mem</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;state&#39;</span><span class="p">)</span>
1287 1288
</pre></div>
</div>
1289 1290
<p>If you do not want to specify the name, you can also use set_input()
to specify the layer to be remembered as the following:</p>
1291 1292 1293 1294 1295
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">mem</span> <span class="o">=</span> <span class="n">memory</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
<span class="n">state</span> <span class="o">=</span> <span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">mem</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
<span class="n">mem</span><span class="o">.</span><span class="n">set_input</span><span class="p">(</span><span class="n">mem</span><span class="p">)</span>
</pre></div>
</div>
1296 1297 1298 1299 1300
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1301
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of the layer which this memory remembers.
1302 1303
If name is None, user should call set_input() to specify the
name of the layer which this memory remembers.</li>
1304 1305
<li><strong>size</strong> (<em>int</em>) &#8211; The dimensionality of memory.</li>
<li><strong>memory_name</strong> (<em>basestring</em>) &#8211; The name of the memory. It is ignored when name is provided.</li>
1306
<li><strong>is_seq</strong> (<em>bool</em>) &#8211; DEPRECATED. is sequence for boot</li>
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
<li><strong>boot</strong> (<em>paddle.v2.config_base.Layer | None</em>) &#8211; This parameter specifies memory&#8217;s output at the first time
step and the output is boot&#8217;s output.</li>
<li><strong>boot_bias</strong> (<em>paddle.v2.attr.ParameterAttribute | None</em>) &#8211; The bias attribute of memory&#8217;s output at the first time step.
If the parameter is set to False or an object whose type is not
paddle.v2.attr.ParameterAttribute, no bias is defined. If the parameter is set
to True, the bias is initialized to zero.</li>
<li><strong>boot_bias_active_type</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type for memory&#8217;s bias at the first time
step. paddle.v2.activation.Linear is the default activation.</li>
<li><strong>boot_with_const_id</strong> (<em>int</em>) &#8211; This parameter specifies memory&#8217;s output at the first
time step and the output is an index.</li>
1317 1318 1319
</ul>
</td>
</tr>
1320
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
1321 1322
</td>
</tr>
1323
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
1324 1325 1326 1327
</td>
</tr>
</tbody>
</table>
1328
</dd></dl>
1329 1330 1331 1332

</div>
<div class="section" id="recurrent-group">
<h3>recurrent_group<a class="headerlink" href="#recurrent-group" title="Permalink to this headline"></a></h3>
1333 1334 1335
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">recurrent_group</code></dt>
1336 1337 1338
<dd><p>Recurrent layer group is an extremely flexible recurrent unit in
PaddlePaddle. As long as the user defines the calculation done within a
time step, PaddlePaddle will iterate such a recurrent calculation over
1339 1340
sequence input. This is useful for attention-based models, or Neural
Turning Machine like models.</p>
1341 1342
<p>The basic usage (time steps) is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="nb">input</span><span class="p">):</span>
1343
    <span class="n">output</span> <span class="o">=</span> <span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
1344
                      <span class="n">size</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
1345
                      <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">v2</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Linear</span><span class="p">(),</span>
1346 1347 1348 1349 1350 1351 1352 1353 1354
                      <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">output</span>

<span class="n">group</span> <span class="o">=</span> <span class="n">recurrent_group</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                        <span class="n">step</span><span class="o">=</span><span class="n">step</span><span class="p">)</span>
</pre></div>
</div>
<p>You can see following configs for further usages:</p>
<ul class="simple">
1355 1356
<li>time steps: lstmemory_group, paddle/gserver/tests/sequence_group.conf,                   demo/seqToseq/seqToseq_net.py</li>
<li>sequence steps: paddle/gserver/tests/sequence_nest_group.conf</li>
1357 1358 1359 1360 1361
</ul>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
1362
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1363 1364 1365 1366 1367
<li><strong>step</strong> (<em>callable</em>) &#8211; <p>A step function which takes the input of recurrent_group as its own
input and returns values as recurrent_group&#8217;s output every time step.</p>
<p>The recurrent group scatters a sequence into time steps. And
for each time step, it will invoke step function, and return
a time step result. Then gather outputs of each time step into
1368 1369
layer group&#8217;s output.</p>
</li>
1370
<li><strong>name</strong> (<em>basestring</em>) &#8211; The recurrent_group&#8217;s name. It is optional.</li>
1371
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | StaticInput | SubsequenceInput | list | tuple</em>) &#8211; <p>Input links array.</p>
1372
<p>paddle.v2.config_base.Layer will be scattered into time steps.
1373 1374
SubsequenceInput will be scattered into sequence steps.
StaticInput will be imported to each time step, and doesn&#8217;t change
1375
over time. It&#8217;s a mechanism to access layer outside step function.</p>
1376
</li>
1377
<li><strong>reverse</strong> (<em>bool</em>) &#8211; If reverse is set to True, the recurrent unit will process the
1378
input sequence in a reverse order.</li>
1379
<li><strong>targetInlink</strong> (<em>paddle.v2.config_base.Layer | SubsequenceInput</em>) &#8211; <p>DEPRECATED.
1380
The input layer which share info with layer group&#8217;s output</p>
1381 1382 1383 1384 1385 1386 1387 1388 1389
<p>Param input specifies multiple input layers. For
SubsequenceInput inputs, config should assign one input
layer that share info(the number of sentences and the number
of words in each sentence) with all layer group&#8217;s outputs.
targetInlink should be one of the layer group&#8217;s input.</p>
</li>
</ul>
</td>
</tr>
1390 1391
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
1392
</tr>
1393 1394
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
1395 1396 1397 1398
</tr>
</tbody>
</table>
</dd></dl>
1399 1400 1401 1402 1403 1404

</div>
<div class="section" id="lstm-step">
<h3>lstm_step<a class="headerlink" href="#lstm-step" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1405
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">lstm_step</code></dt>
1406 1407
<dd><p>LSTM Step Layer. This function is used only in recurrent_group.
The lstm equations are shown as follows.</p>
1408
<div class="math">
1409
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
1410 1411
<p>The input of lstm step is <span class="math">\(Wx_t + Wh_{t-1}\)</span>, and user should use
<code class="code docutils literal"><span class="pre">mixed</span></code> and <code class="code docutils literal"><span class="pre">full_matrix_projection</span></code> to calculate these
1412
input vectors.</p>
1413 1414 1415
<p>The state of lstm step is <span class="math">\(c_{t-1}\)</span>. And lstm step layer will do</p>
<div class="math">
\[ \begin{align}\begin{aligned}i_t = \sigma(input + W_{ci}c_{t-1} + b_i)\\...\end{aligned}\end{align} \]</div>
1416 1417
<p>This layer has two outputs. The default output is <span class="math">\(h_t\)</span>. The other
output is <span class="math">\(o_t\)</span>, whose name is &#8216;state&#8217; and users can use
1418 1419 1420 1421 1422 1423
<code class="code docutils literal"><span class="pre">get_output</span></code> to extract this output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1424
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of this layer&#8217;s output, which must be
equal to the dimension of the state.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
<li><strong>state</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The state of the LSTM unit.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Tanh is the default activation.</li>
<li><strong>gate_act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type of the gate. paddle.v2.activation.Sigmoid is the
default activation.</li>
<li><strong>state_act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type of the state. paddle.v2.activation.Tanh is the
default activation.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for details.</li>
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="gru-step">
<h3>gru_step<a class="headerlink" href="#gru-step" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1456
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">gru_step</code></dt>
1457 1458 1459 1460 1461
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer, whose dimension can be divided by 3.</li>
<li><strong>output_mem</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; A memory which memorizes the output of this layer at previous
time step.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of this layer&#8217;s output. If it is not set or set to None,
it will be set to one-third of the dimension of the input automatically.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type of this layer&#8217;s output. paddle.v2.activation.Tanh
is the default activation.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>gate_act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type of this layer&#8217;s two gates. paddle.v2.activation.Sigmoid is
the default activation.</li>
1472 1473 1474 1475
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The parameter attribute for bias. If this parameter is set to
False or an object whose type is not paddle.v2.attr.ParameterAttribute, no bias
is defined. If this parameter is set to True,
the bias is initialized to zero.</li>
1476 1477
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute. See paddle.v2.attr.ParameterAttribute for details.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for details.</li>
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="beam-search">
<h3>beam_search<a class="headerlink" href="#beam-search" title="Permalink to this headline"></a></h3>
1494 1495 1496
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">beam_search</code></dt>
1497 1498 1499 1500 1501 1502
<dd><p>Beam search is a heuristic search algorithm used in sequence generation.
It explores a graph by expanding the most promising nodes in a limited set
to maintain tractability.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">rnn_step</span><span class="p">(</span><span class="nb">input</span><span class="p">):</span>
    <span class="n">last_time_step_output</span> <span class="o">=</span> <span class="n">memory</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;rnn&#39;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">)</span>
1503
    <span class="k">with</span> <span class="n">mixed</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;rnn&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">simple_rnn</span><span class="p">:</span>
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        <span class="n">simple_rnn</span> <span class="o">+=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
        <span class="n">simple_rnn</span> <span class="o">+=</span> <span class="n">last_time_step_output</span>
    <span class="k">return</span> <span class="n">simple_rnn</span>

<span class="n">generated_word_embedding</span> <span class="o">=</span> <span class="n">GeneratedInput</span><span class="p">(</span>
                       <span class="n">size</span><span class="o">=</span><span class="n">target_dictionary_dim</span><span class="p">,</span>
                       <span class="n">embedding_name</span><span class="o">=</span><span class="s2">&quot;target_language_embedding&quot;</span><span class="p">,</span>
                       <span class="n">embedding_size</span><span class="o">=</span><span class="n">word_vector_dim</span><span class="p">)</span>

<span class="n">beam_gen</span> <span class="o">=</span> <span class="n">beam_search</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;decoder&quot;</span><span class="p">,</span>
                       <span class="n">step</span><span class="o">=</span><span class="n">rnn_step</span><span class="p">,</span>
                       <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">StaticInput</span><span class="p">(</span><span class="n">encoder_last</span><span class="p">),</span>
                              <span class="n">generated_word_embedding</span><span class="p">],</span>
                       <span class="n">bos_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
                       <span class="n">eos_id</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                       <span class="n">beam_size</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
</pre></div>
</div>
<p>Please see the following demo for more details:</p>
<ul class="simple">
<li>machine translation : demo/seqToseq/translation/gen.conf                             demo/seqToseq/seqToseq_net.py</li>
</ul>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1531 1532
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of the recurrent unit that is responsible for
generating sequences. It is optional.</li>
1533 1534 1535 1536 1537 1538 1539
<li><strong>step</strong> (<em>callable</em>) &#8211; <p>A callable function that defines the calculation in a time
step, and it is applied to sequences with arbitrary length by
sharing a same set of weights.</p>
<p>You can refer to the first parameter of recurrent_group, or
demo/seqToseq/seqToseq_net.py for more details.</p>
</li>
<li><strong>input</strong> (<em>list</em>) &#8211; Input data for the recurrent unit, which should include the
1540 1541
previously generated words as a GeneratedInput object.
In beam_search, none of the input&#8217;s type should be paddle.v2.config_base.Layer.</li>
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
<li><strong>bos_id</strong> (<em>int</em>) &#8211; Index of the start symbol in the dictionary. The start symbol
is a special token for NLP task, which indicates the
beginning of a sequence. In the generation task, the start
symbol is essential, since it is used to initialize the RNN
internal state.</li>
<li><strong>eos_id</strong> (<em>int</em>) &#8211; Index of the end symbol in the dictionary. The end symbol is
a special token for NLP task, which indicates the end of a
sequence. The generation process will stop once the end
symbol is generated, or a pre-defined max iteration number
is exceeded.</li>
<li><strong>max_length</strong> (<em>int</em>) &#8211; Max generated sequence length.</li>
<li><strong>beam_size</strong> (<em>int</em>) &#8211; Beam search for sequence generation is an iterative search
algorithm. To maintain tractability, every iteration only
only stores a predetermined number, called the beam_size,
of the most promising next words. The greater the beam
size, the fewer candidate words are pruned.</li>
<li><strong>num_results_per_sample</strong> (<em>int</em>) &#8211; Number of the generated results per input
sequence. This number must always be less than
beam size.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The generated word index.</p>
</td>
</tr>
1567
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
1568 1569 1570 1571 1572
</td>
</tr>
</tbody>
</table>
</dd></dl>
1573 1574 1575 1576 1577 1578

</div>
<div class="section" id="get-output">
<h3>get_output<a class="headerlink" href="#get-output" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1579
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">get_output</code></dt>
1580 1581 1582 1583 1584 1585 1586 1587 1588
<dd><p>Get layer&#8217;s output by name. In PaddlePaddle, a layer might return multiple
values, but returns one layer&#8217;s output. If the user wants to use another
output besides the default one, please use get_output first to get
the output from input.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1589
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
1590
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input layer. And this layer should contain
1591
multiple outputs.</li>
1592 1593 1594
<li><strong>arg_name</strong> (<em>basestring</em>) &#8211; The name of the output to be extracted from the input layer.</li>
<li><strong>layer_attr</strong> &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="mixed-layer">
<h2>Mixed Layer<a class="headerlink" href="#mixed-layer" title="Permalink to this headline"></a></h2>
<div class="section" id="mixed">
<span id="api-v2-layer-mixed"></span><h3>mixed<a class="headerlink" href="#mixed" title="Permalink to this headline"></a></h3>
1614 1615 1616
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">mixed</code></dt>
1617 1618 1619 1620
<dd><p>Mixed Layer. A mixed layer will add all inputs together, then activate.
Each inputs is a projection or operator.</p>
<p>There are two styles of usages.</p>
<ol class="arabic simple">
1621
<li>When not set inputs parameter, use mixed like this:</li>
1622
</ol>
1623
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">mixed</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span> <span class="k">as</span> <span class="n">m</span><span class="p">:</span>
1624 1625 1626 1627 1628
    <span class="n">m</span> <span class="o">+=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">)</span>
    <span class="n">m</span> <span class="o">+=</span> <span class="n">identity_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
1629
<li>You can also set all inputs when invoke mixed as follows:</li>
1630
</ol>
1631
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">mixed</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
                <span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">),</span>
                       <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer2</span><span class="p">)])</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; mixed layer name. Can be referenced by other layer.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; layer size.</li>
1643
<li><strong>input</strong> &#8211; The input of this layer. It is an optional parameter. If set,
1644
then this function will just return layer&#8217;s name.</li>
1645
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation Type. paddle.v2.activation.Linear is the default activation.</li>
1646 1647 1648
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
1649
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer config. Default is None.</li>
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">MixedLayerType object can add inputs or layer name.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">MixedLayerType</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
1662 1663 1664 1665 1666 1667

</div>
<div class="section" id="embedding">
<span id="api-v2-layer-embedding"></span><h3>embedding<a class="headerlink" href="#embedding" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1668
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">embedding</code></dt>
1669 1670 1671 1672 1673 1674
<dd><p>Define a embedding Layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1675
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
1676
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer, which must be Index Data.</li>
1677
<li><strong>size</strong> (<em>int</em>) &#8211; The embedding dimension.</li>
1678
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None</em>) &#8211; The embedding parameter attribute. See paddle.v2.attr.ParameterAttribute
1679
for details.</li>
1680
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; Extra layer Config. Default is None.</li>
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="scaling-projection">
<h3>scaling_projection<a class="headerlink" href="#scaling-projection" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1699
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">scaling_projection</code></dt>
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
<dd><p>scaling_projection multiplies the input with a scalar parameter and add to
the output.</p>
<div class="math">
\[out += w * in\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">scaling_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1713
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A ScalingProjection object</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">ScalingProjection</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="dotmul-projection">
<h3>dotmul_projection<a class="headerlink" href="#dotmul-projection" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1733
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">dotmul_projection</code></dt>
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
<dd><p>DotMulProjection with a layer as input.
It performs element-wise multiplication with weight.</p>
<div class="math">
\[out.row[i] += in.row[i] .* weight\]</div>
<p>where <span class="math">\(.*\)</span> means element-wise multiplication.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">dotmul_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1748
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A DotMulProjection Object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">DotMulProjection</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="dotmul-operator">
<h3>dotmul_operator<a class="headerlink" href="#dotmul-operator" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1768
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">dotmul_operator</code></dt>
1769 1770
<dd><p>DotMulOperator takes two inputs and performs element-wise multiplication:</p>
<div class="math">
1771
\[out.row[i] += scale * (a.row[i] .* b.row[i])\]</div>
1772 1773 1774
<p>where <span class="math">\(.*\)</span> means element-wise multiplication, and
scale is a config scalar, its default value is one.</p>
<p>The example usage is:</p>
1775
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">op</span> <span class="o">=</span> <span class="n">dotmul_operator</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>a</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input layer1</li>
<li><strong>b</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Input layer2</li>
<li><strong>scale</strong> (<em>float</em>) &#8211; config scalar, default value is one.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A DotMulOperator Object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">DotMulOperator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="full-matrix-projection">
<h3>full_matrix_projection<a class="headerlink" href="#full-matrix-projection" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1804
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">full_matrix_projection</code></dt>
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
<dd><p>Full Matrix Projection. It performs full matrix multiplication.</p>
<div class="math">
\[out.row[i] += in.row[i] * weight\]</div>
<p>There are two styles of usage.</p>
<ol class="arabic simple">
<li>When used in mixed like this, you can only set the input:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">mixed</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span> <span class="k">as</span> <span class="n">m</span><span class="p">:</span>
    <span class="n">m</span> <span class="o">+=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>When used as an independant object like this, you must set the size:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                              <span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
                              <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;_proj&#39;</span><span class="p">))</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1829
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
<li><strong>size</strong> (<em>int</em>) &#8211; The parameter size. Means the width of parameter.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A FullMatrixProjection Object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">FullMatrixProjection</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="identity-projection">
<h3>identity_projection<a class="headerlink" href="#identity-projection" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1850
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">identity_projection</code></dt>
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
<dd><ol class="arabic simple">
<li>IdentityProjection if offset=None. It performs:</li>
</ol>
<div class="math">
\[out.row[i] += in.row[i]\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">identity_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<p>2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
but layer size may be smaller than input size.
It select dimesions [offset, offset+layer_size) from input:</p>
<div class="math">
\[out.row[i] += in.row[i + \textrm{offset}]\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">identity_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                           <span class="n">offset</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
<p>Note that both of two projections should not have any parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1876
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
<li><strong>offset</strong> (<em>int</em>) &#8211; Offset, None if use default.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A IdentityProjection or IdentityOffsetProjection object</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">IdentityProjection or IdentityOffsetProjection</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
</div>
<div class="section" id="slice-projection">
<h3>slice_projection<a class="headerlink" href="#slice-projection" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">slice_projection</code></dt>
<dd><p>slice_projection can slice the input value into multiple parts,
and then select some of them to merge into a new output.</p>
<div class="math">
\[output = [input.slices()]\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">slice_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span> <span class="n">slices</span><span class="o">=</span><span class="p">[(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">30</span><span class="p">)])</span>
</pre></div>
</div>
<p>Note that slice_projection should not have any parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1911
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
<li><strong>slices</strong> (<em>pair of int</em>) &#8211; An array of slice parameters.
Each slice contains the start and end offsets based
on the input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A SliceProjection object</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">SliceProjection</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

1928 1929 1930 1931 1932
</div>
<div class="section" id="table-projection">
<h3>table_projection<a class="headerlink" href="#table-projection" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1933
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">table_projection</code></dt>
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
<dd><p>Table Projection. It selects rows from parameter where row_id
is in input_ids.</p>
<div class="math">
\[out.row[i] += table.row[ids[i]]\]</div>
<p>where <span class="math">\(out\)</span> is output, <span class="math">\(table\)</span> is parameter, <span class="math">\(ids\)</span> is input_ids,
and <span class="math">\(i\)</span> is row_id.</p>
<p>There are two styles of usage.</p>
<ol class="arabic simple">
<li>When used in mixed like this, you can only set the input:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">with</span> <span class="n">mixed</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span> <span class="k">as</span> <span class="n">m</span><span class="p">:</span>
    <span class="n">m</span> <span class="o">+=</span> <span class="n">table_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>When used as an independant object like this, you must set the size:</li>
</ol>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">table_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                        <span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
                        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;_proj&#39;</span><span class="p">))</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
1961
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer, which must contains id fields.</li>
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
<li><strong>size</strong> (<em>int</em>) &#8211; The parameter size. Means the width of parameter.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A TableProjection Object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">TableProjection</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="trans-full-matrix-projection">
<h3>trans_full_matrix_projection<a class="headerlink" href="#trans-full-matrix-projection" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1982
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">trans_full_matrix_projection</code></dt>
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
<dd><p>Different from full_matrix_projection, this projection performs matrix
multiplication, using transpose of weight.</p>
<div class="math">
\[out.row[i] += in.row[i] * w^\mathrm{T}\]</div>
<p><span class="math">\(w^\mathrm{T}\)</span> means transpose of weight.
The simply usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">proj</span> <span class="o">=</span> <span class="n">trans_full_matrix_projection</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                                    <span class="n">size</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
                                    <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span>
                                         <span class="n">name</span><span class="o">=</span><span class="s1">&#39;_proj&#39;</span><span class="p">,</span>
                                         <span class="n">initial_mean</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span>
                                         <span class="n">initial_std</span><span class="o">=</span><span class="mf">0.01</span><span class="p">))</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2002
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
<li><strong>size</strong> (<em>int</em>) &#8211; The parameter size. Means the width of parameter.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; Parameter config, None if use default.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A TransposedFullMatrixProjection Object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">TransposedFullMatrixProjection</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="aggregate-layers">
<h2>Aggregate Layers<a class="headerlink" href="#aggregate-layers" title="Permalink to this headline"></a></h2>
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
<div class="section" id="aggregatelevel">
<h3>AggregateLevel<a class="headerlink" href="#aggregatelevel" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">AggregateLevel</code></dt>
<dd><p>PaddlePaddle supports three sequence types:</p>
<ul class="simple">
<li><code class="code docutils literal"><span class="pre">SequenceType.NO_SEQUENCE</span></code> means the sample is not a sequence.</li>
<li><code class="code docutils literal"><span class="pre">SequenceType.SEQUENCE</span></code> means the sample is a sequence.</li>
<li><code class="code docutils literal"><span class="pre">SequenceType.SUB_SEQUENCE</span></code> means the sample is a nested sequence,
each timestep of which is also a sequence.</li>
</ul>
<p>Accordingly, AggregateLevel supports two modes:</p>
<ul class="simple">
2036
<li><code class="code docutils literal"><span class="pre">AggregateLevel.TO_NO_SEQUENCE</span></code> means the aggregation acts on each
2037 2038
timestep of a sequence, both <code class="code docutils literal"><span class="pre">SUB_SEQUENCE</span></code> and <code class="code docutils literal"><span class="pre">SEQUENCE</span></code> will
be aggregated to <code class="code docutils literal"><span class="pre">NO_SEQUENCE</span></code>.</li>
2039
<li><code class="code docutils literal"><span class="pre">AggregateLevel.TO_SEQUENCE</span></code> means the aggregation acts on each
2040 2041 2042 2043 2044 2045
sequence of a nested sequence, <code class="code docutils literal"><span class="pre">SUB_SEQUENCE</span></code> will be aggregated to
<code class="code docutils literal"><span class="pre">SEQUENCE</span></code>.</li>
</ul>
</dd></dl>

</div>
2046 2047 2048 2049
<div class="section" id="api-v2-layer-pooling">
<span id="id1"></span><h3>pooling<a class="headerlink" href="#api-v2-layer-pooling" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2050
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">pooling</code></dt>
2051
<dd><p>Pooling layer for sequence inputs, not used for Image.</p>
2052 2053 2054 2055 2056 2057
<p>If stride &gt; 0, this layer slides a window whose size is determined by stride,
and return the pooling value of the window as the output. Thus, a long sequence
will be shorten.</p>
<p>The parameter stride specifies the intervals at which to apply the pooling
operation. Note that for sequence with sub-sequence, the default value
of stride is -1.</p>
2058 2059 2060
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">seq_pool</span> <span class="o">=</span> <span class="n">pooling</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                         <span class="n">pooling_type</span><span class="o">=</span><span class="n">AvgPooling</span><span class="p">(),</span>
2061
                         <span class="n">agg_level</span><span class="o">=</span><span class="n">AggregateLevel</span><span class="o">.</span><span class="n">TO_NO_SEQUENCE</span><span class="p">)</span>
2062 2063 2064 2065 2066 2067 2068
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2069 2070
<li><strong>agg_level</strong> (<em>AggregateLevel</em>) &#8211; AggregateLevel.TO_NO_SEQUENCE or
AggregateLevel.TO_SEQUENCE</li>
2071
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2072 2073
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
<li><strong>pooling_type</strong> (<em>BasePoolingType | None</em>) &#8211; Type of pooling, MaxPooling(default), AvgPooling,
2074
SumPooling, SquareRootNPooling.</li>
2075
<li><strong>stride</strong> (<em>Int</em>) &#8211; The step size between successive pooling regions.</li>
2076 2077 2078
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
2079
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; The Extra Attributes for layer, such as dropout.</li>
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="last-seq">
<span id="api-v2-layer-last-seq"></span><h3>last_seq<a class="headerlink" href="#last-seq" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2098
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">last_seq</code></dt>
2099
<dd><p>Get Last Timestamp Activation of a sequence.</p>
2100 2101 2102 2103
<p>If stride &gt; 0, this layer slides a window whose size is determined by stride,
and return the last value of the window as the output. Thus, a long sequence
will be shorten. Note that for sequence with sub-sequence, the default value
of stride is -1.</p>
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">seq</span> <span class="o">=</span> <span class="n">last_seq</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>agg_level</strong> &#8211; Aggregated level</li>
2114
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2115
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2116
<li><strong>stride</strong> (<em>Int</em>) &#8211; The step size between successive pooling regions.</li>
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="first-seq">
<span id="api-v2-layer-first-seq"></span><h3>first_seq<a class="headerlink" href="#first-seq" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2136
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">first_seq</code></dt>
2137
<dd><p>Get First Timestamp Activation of a sequence.</p>
2138 2139 2140 2141
<p>If stride &gt; 0, this layer slides a window whose size is determined by stride,
and return the first value of the window as the output. Thus, a long sequence
will be shorten. Note that for sequence with sub-sequence, the default value
of stride is -1.</p>
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">seq</span> <span class="o">=</span> <span class="n">first_seq</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>agg_level</strong> &#8211; aggregation level</li>
2152
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2153
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2154
<li><strong>stride</strong> (<em>Int</em>) &#8211; The step size between successive pooling regions.</li>
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="concat">
<h3>concat<a class="headerlink" href="#concat" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2174
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">concat</code></dt>
2175 2176
<dd><p>Concatenate all input vectors to one vector.
Inputs can be a list of paddle.v2.config_base.Layer or a list of projection.</p>
2177 2178 2179 2180 2181 2182 2183 2184 2185
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">concat</span> <span class="o">=</span> <span class="n">concat</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">])</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2186
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2187
<li><strong>input</strong> (<em>list | tuple | collections.Sequence</em>) &#8211; The input layers or projections</li>
2188
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Identity is the default activation.</li>
2189 2190
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="seq-concat">
<h3>seq_concat<a class="headerlink" href="#seq-concat" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2209
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">seq_concat</code></dt>
2210
<dd><p>Concatenate sequence a and sequence b.</p>
2211 2212 2213
<dl class="docutils">
<dt>Inputs:</dt>
<dd><ul class="first last simple">
2214
<li>a = [a1, a2, ..., am]</li>
2215 2216 2217 2218
<li>b = [b1, b2, ..., bn]</li>
</ul>
</dd>
</dl>
2219 2220 2221
<p>Output: [a1, ..., am, b1, ..., bn]</p>
<p>Note that the above computation is for one sample. Multiple samples are
processed in one batch.</p>
2222 2223 2224 2225 2226 2227 2228 2229 2230
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">concat</span> <span class="o">=</span> <span class="n">seq_concat</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2231
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2232 2233
<li><strong>a</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input sequence layer</li>
<li><strong>b</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The second input sequence layer</li>
2234
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Identity is the default activation.</li>
2235 2236
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
2237 2238 2239
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
</div>
<div class="section" id="seq-slice">
<h3>seq_slice<a class="headerlink" href="#seq-slice" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">seq_slice</code></dt>
<dd><p>seq_slice will return one or several sub-sequences from the
input sequence layer given start and end indices.</p>
<blockquote>
<div><ul class="simple">
<li>If only start indices are given, and end indices are set to None,
this layer slices the input sequence from the given start indices
to its end.</li>
<li>If only end indices are given, and start indices are set to None,
this layer slices the input sequence from its beginning to the
given end indices.</li>
<li>If start and end indices are both given, they should have the same
number of elements.</li>
</ul>
</div></blockquote>
<p>If start or end indices contains more than one elements, the input sequence
will be sliced for multiple times.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">seq_silce</span> <span class="o">=</span> <span class="n">seq_slice</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input_seq</span><span class="p">,</span>
                            <span class="n">starts</span><span class="o">=</span><span class="n">start_pos</span><span class="p">,</span> <span class="n">ends</span><span class="o">=</span><span class="n">end_pos</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2284
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2285
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer, which should be a sequence.</li>
2286 2287
<li><strong>starts</strong> (<em>paddle.v2.config_base.Layer | None</em>) &#8211; The start indices to slice the input sequence.</li>
<li><strong>ends</strong> (<em>paddle.v2.config_base.Layer | None</em>) &#8211; The end indices to slice the input sequence.</li>
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

2301 2302 2303
</div>
<div class="section" id="kmax-sequence-score">
<h3>kmax_sequence_score<a class="headerlink" href="#kmax-sequence-score" title="Permalink to this headline"></a></h3>
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
</div>
<div class="section" id="sub-nested-seq">
<h3>sub_nested_seq<a class="headerlink" href="#sub-nested-seq" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">sub_nested_seq</code></dt>
<dd><p>The sub_nested_seq accepts two inputs: the first one is a nested
sequence; the second one is a set of selceted indices in the nested sequence.</p>
<p>Then sub_nest_seq trims the first nested sequence input according
to the selected indices to form a new output. This layer is useful in
beam training.</p>
<p>The example usage is:</p>
2316
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">sub_nest_seq</span> <span class="o">=</span> <span class="n">sub_nested_seq</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">selected_indices</span><span class="o">=</span><span class="n">selected_ids</span><span class="p">)</span>
2317 2318 2319 2320 2321 2322 2323
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2324 2325
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer. It is a nested sequence.</li>
<li><strong>selected_indices</strong> &#8211; A set of sequence indices in the nested sequence.</li>
2326
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

2340 2341 2342 2343 2344 2345 2346 2347
</div>
</div>
<div class="section" id="reshaping-layers">
<h2>Reshaping Layers<a class="headerlink" href="#reshaping-layers" title="Permalink to this headline"></a></h2>
<div class="section" id="block-expand">
<h3>block_expand<a class="headerlink" href="#block-expand" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2348
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">block_expand</code></dt>
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
<dd><dl class="docutils">
<dt>Expand feature map to minibatch matrix.</dt>
<dd><ul class="first last simple">
<li>matrix width is: block_y * block_x * num_channels</li>
<li>matirx height is: outputH * outputW</li>
</ul>
</dd>
</dl>
<div class="math">
\[ \begin{align}\begin{aligned}outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y\\outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x\end{aligned}\end{align} \]</div>
2359
<p>The expanding method is the same with ExpandConvLayer, but saved the transposed
2360
value. After expanding, output.sequenceStartPositions will store timeline.
2361
The number of time steps is outputH * outputW and the dimension of each
2362
time step is block_y * block_x * num_channels. This layer can be used after
2363
convolutional neural network, and before recurrent neural network.</p>
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">block_expand</span> <span class="o">=</span> <span class="n">block_expand</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                                  <span class="n">num_channels</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
                                  <span class="n">stride_x</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                                  <span class="n">stride_y</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                                  <span class="n">block_x</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                                  <span class="n">block_x</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2378
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2379 2380 2381
<li><strong>num_channels</strong> (<em>int</em>) &#8211; The number of input channels. If the parameter is not set or
set to None, its actual value will be automatically set to
the channels number of the input.</li>
2382 2383 2384 2385 2386 2387
<li><strong>block_x</strong> (<em>int</em>) &#8211; The width of sub block.</li>
<li><strong>block_y</strong> (<em>int</em>) &#8211; The width of sub block.</li>
<li><strong>stride_x</strong> (<em>int</em>) &#8211; The stride size in horizontal direction.</li>
<li><strong>stride_y</strong> (<em>int</em>) &#8211; The stride size in vertical direction.</li>
<li><strong>padding_x</strong> (<em>int</em>) &#8211; The padding size in horizontal direction.</li>
<li><strong>padding_y</strong> (<em>int</em>) &#8211; The padding size in vertical direction.</li>
2388 2389 2390
<li><strong>name</strong> (<em>basestring.</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

2404 2405 2406 2407 2408 2409 2410 2411 2412
</div>
<div class="section" id="expandlevel">
<span id="api-v2-layer-expand"></span><h3>ExpandLevel<a class="headerlink" href="#expandlevel" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">ExpandLevel</code></dt>
<dd><p>Please refer to AggregateLevel first.</p>
<p>ExpandLevel supports two modes:</p>
<ul class="simple">
2413 2414
<li><code class="code docutils literal"><span class="pre">ExpandLevel.FROM_NO_SEQUENCE</span></code> means the expansion acts on
<code class="code docutils literal"><span class="pre">NO_SEQUENCE</span></code>, which will be expanded to
2415
<code class="code docutils literal"><span class="pre">SEQUENCE</span></code> or <code class="code docutils literal"><span class="pre">SUB_SEQUENCE</span></code>.</li>
2416 2417
<li><code class="code docutils literal"><span class="pre">ExpandLevel.FROM_SEQUENCE</span></code> means the expansion acts on
<code class="code docutils literal"><span class="pre">SEQUENCE</span></code>, which will be expanded to
2418 2419 2420 2421
<code class="code docutils literal"><span class="pre">SUB_SEQUENCE</span></code>.</li>
</ul>
</dd></dl>

2422 2423
</div>
<div class="section" id="expand">
2424
<h3>expand<a class="headerlink" href="#expand" title="Permalink to this headline"></a></h3>
2425 2426
<dl class="class">
<dt>
2427
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">expand</code></dt>
2428 2429 2430 2431 2432
<dd><p>A layer for &#8220;Expand Dense data or (sequence data where the length of each
sequence is one) to sequence data.&#8221;</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">expand</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span>
                      <span class="n">expand_as</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span>
2433
                      <span class="n">expand_level</span><span class="o">=</span><span class="n">ExpandLevel</span><span class="o">.</span><span class="n">FROM_NO_SEQUENCE</span><span class="p">)</span>
2434 2435 2436 2437 2438 2439 2440
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2441
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2442
<li><strong>expand_as</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Expand as this layer&#8217;s sequence info.</li>
2443
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2444 2445 2446
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
<li><strong>expand_level</strong> (<em>ExpandLevel</em>) &#8211; whether input layer is timestep(default) or sequence.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="repeat">
<h3>repeat<a class="headerlink" href="#repeat" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2467
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">repeat</code></dt>
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
<dd><p>A layer for repeating the input for num_repeats times.</p>
<p>If as_row_vector:
.. math:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">y</span>  <span class="o">=</span> <span class="p">[</span><span class="n">x_1</span><span class="p">,</span>\<span class="n">cdots</span><span class="p">,</span> <span class="n">x_n</span><span class="p">,</span> \<span class="n">cdots</span><span class="p">,</span> <span class="n">x_1</span><span class="p">,</span> \<span class="n">cdots</span><span class="p">,</span> <span class="n">x_n</span><span class="p">]</span>
</pre></div>
</div>
<p>If not as_row_vector:
.. math:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">y</span>  <span class="o">=</span> <span class="p">[</span><span class="n">x_1</span><span class="p">,</span>\<span class="n">cdots</span><span class="p">,</span> <span class="n">x_1</span><span class="p">,</span> \<span class="n">cdots</span><span class="p">,</span> <span class="n">x_n</span><span class="p">,</span> \<span class="n">cdots</span><span class="p">,</span> <span class="n">x_n</span><span class="p">]</span>
</pre></div>
</div>
2479 2480 2481 2482 2483 2484 2485 2486 2487
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">expand</span> <span class="o">=</span> <span class="n">repeat</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span> <span class="n">num_repeats</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2488
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2489
<li><strong>num_repeats</strong> (<em>int</em>) &#8211; Repeat the input so many times</li>
2490
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2491 2492 2493 2494 2495
<li><strong>as_row_vector</strong> (<em>bool</em>) &#8211; True for treating input as row vector and repeating
in the column direction.  This is equivalent to apply
concat() with num_repeats same input.
False for treating input as column vector and repeating
in the row direction.</li>
2496
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Identity is the default activation.</li>
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="rotate">
<h3>rotate<a class="headerlink" href="#rotate" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2516
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">rotate</code></dt>
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
<dd><p>A layer for rotating 90 degrees (clock-wise) for each feature channel,
usually used when the input sample is some image or feature map.</p>
<div class="math">
\[y(j,i,:) = x(M-i-1,j,:)\]</div>
<p>where <span class="math">\(x\)</span> is (M x N x C) input, and <span class="math">\(y\)</span> is (N x M x C) output.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">rot</span> <span class="o">=</span> <span class="n">rotate</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span>
                   <span class="n">height</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
                   <span class="n">width</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2533
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2534
<li><strong>height</strong> (<em>int</em>) &#8211; The height of the sample matrix</li>
2535
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="seq-reshape">
<h3>seq_reshape<a class="headerlink" href="#seq-reshape" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2555
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">seq_reshape</code></dt>
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
<dd><p>A layer for reshaping the sequence. Assume the input sequence has T instances,
the dimension of each instance is M, and the input reshape_size is N, then the
output sequence has T*M/N instances, the dimension of each instance is N.</p>
<p>Note that T*M/N must be an integer.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">reshape</span> <span class="o">=</span> <span class="n">seq_reshape</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span> <span class="n">reshape_size</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2569
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2570
<li><strong>reshape_size</strong> (<em>int</em>) &#8211; the size of reshaped sequence.</li>
2571
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2572
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Identity is the default activation.</li>
2573
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
2574 2575 2576
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="math-layers">
<h2>Math Layers<a class="headerlink" href="#math-layers" title="Permalink to this headline"></a></h2>
<div class="section" id="addto">
<h3>addto<a class="headerlink" href="#addto" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2598
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">addto</code></dt>
2599 2600 2601 2602 2603 2604 2605
<dd><p>AddtoLayer.</p>
<div class="math">
\[y = f(\sum_{i} x_i + b)\]</div>
<p>where <span class="math">\(y\)</span> is output, <span class="math">\(x\)</span> is input, <span class="math">\(b\)</span> is bias,
and <span class="math">\(f\)</span> is activation function.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">addto</span> <span class="o">=</span> <span class="n">addto</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">],</span>
2606
                    <span class="n">act</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">v2</span><span class="o">.</span><span class="n">activation</span><span class="o">.</span><span class="n">Relu</span><span class="p">(),</span>
2607 2608 2609
                    <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
2610 2611 2612
<p>This layer just simply adds all input layers together, then activates the
sum. All inputs should share the same dimension, which is also the dimension
of this layer&#8217;s output.</p>
2613 2614 2615 2616 2617 2618 2619 2620
<p>There is no weight matrix for each input, because it just a simple add
operation. If you want a complicated operation before add, please use
mixed.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2621
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2622
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple</em>) &#8211; The input layers. It could be a paddle.v2.config_base.Layer or list/tuple of
2623
paddle.v2.config_base.Layer.</li>
2624
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation Type. paddle.v2.activation.Linear is the default activation.</li>
2625 2626 2627
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
2628 2629
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="linear-comb">
<h3>linear_comb<a class="headerlink" href="#linear-comb" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2648
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">linear_comb</code></dt>
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
<dd><dl class="docutils">
<dt>A layer for weighted sum of vectors takes two inputs.</dt>
<dd><ul class="first last simple">
<li><dl class="first docutils">
<dt>Input: size of weights is M</dt>
<dd>size of vectors is M*N</dd>
</dl>
</li>
<li>Output: a vector of size=N</li>
</ul>
</dd>
</dl>
<div class="math">
\[z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)\]</div>
<p>where <span class="math">\(0 \le i \le N-1\)</span></p>
<p>Or in the matrix notation:</p>
<div class="math">
\[z = x^\mathrm{T} Y\]</div>
<dl class="docutils">
<dt>In this formular:</dt>
<dd><ul class="first last simple">
<li><span class="math">\(x\)</span>: weights</li>
<li><span class="math">\(y\)</span>: vectors.</li>
<li><span class="math">\(z\)</span>: the output.</li>
</ul>
</dd>
</dl>
<p>Note that the above computation is for one sample. Multiple samples are
processed in one batch.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">linear_comb</span> <span class="o">=</span> <span class="n">linear_comb</span><span class="p">(</span><span class="n">weights</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">vectors</span><span class="o">=</span><span class="n">vectors</span><span class="p">,</span>
                                <span class="n">size</span><span class="o">=</span><span class="n">elem_dim</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>weights</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The weight layer.</li>
<li><strong>vectors</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The vector layer.</li>
2690
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of this layer.</li>
2691
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2692 2693
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="interpolation">
<h3>interpolation<a class="headerlink" href="#interpolation" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2712
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">interpolation</code></dt>
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
<dd><p>This layer is for linear interpolation with two inputs,
which is used in NEURAL TURING MACHINE.</p>
<div class="math">
\[y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]\]</div>
<p>where <span class="math">\(x_1\)</span> and <span class="math">\(x_2\)</span> are two (batchSize x dataDim) inputs,
<span class="math">\(w\)</span> is (batchSize x 1) weight vector, and <span class="math">\(y\)</span> is
(batchSize x dataDim) output.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">interpolation</span> <span class="o">=</span> <span class="n">interpolation</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">],</span> <span class="n">weight</span><span class="o">=</span><span class="n">layer3</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2729
<li><strong>input</strong> (<em>list | tuple</em>) &#8211; The input of this layer.</li>
2730
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Weight layer.</li>
2731
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="bilinear-interp">
<h3>bilinear_interp<a class="headerlink" href="#bilinear-interp" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2751
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">bilinear_interp</code></dt>
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
<dd><p>This layer is to implement bilinear interpolation on conv layer output.</p>
<p>Please refer to Wikipedia: <a class="reference external" href="https://en.wikipedia.org/wiki/Bilinear_interpolation">https://en.wikipedia.org/wiki/Bilinear_interpolation</a></p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">bilinear</span> <span class="o">=</span> <span class="n">bilinear_interp</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">out_size_x</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span> <span class="n">out_size_y</span><span class="o">=</span><span class="mi">64</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer.</em>) &#8211; A input layer.</li>
2764 2765 2766
<li><strong>out_size_x</strong> (<em>int | None</em>) &#8211; bilinear interpolation output width.</li>
<li><strong>out_size_y</strong> (<em>int | None</em>) &#8211; bilinear interpolation output height.</li>
<li><strong>name</strong> (<em>None | basestring</em>) &#8211; The layer&#8217;s name, which cna not be specified.</li>
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; Extra Layer attribute.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
</div>
<div class="section" id="dot-prod">
<h3>dot_prod<a class="headerlink" href="#dot-prod" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">dot_prod</code></dt>
<dd><p>A layer for computing the dot product of two vectors.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">dot_prod</span> <span class="o">=</span> <span class="n">dot_prod</span><span class="p">(</span><span class="n">input1</span><span class="o">=</span><span class="n">vec1</span><span class="p">,</span> <span class="n">input2</span><span class="o">=</span><span class="n">vec2</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>input1</strong> &#8211; The first input layer.</li>
<li><strong>input2</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The second input layer.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="out-prod">
<h3>out_prod<a class="headerlink" href="#out-prod" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">out_prod</code></dt>
<dd><p>A layer for computing the outer product of two vectors
The result is a matrix of size(input1) x size(input2)</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">out_prod</span> <span class="o">=</span> <span class="n">out_prod</span><span class="p">(</span><span class="n">input1</span><span class="o">=</span><span class="n">vec1</span><span class="p">,</span> <span class="n">input2</span><span class="o">=</span><span class="n">vec2</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>input1</strong> &#8211; The first input layer.</li>
<li><strong>input2</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The second input layer.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

2850 2851 2852 2853 2854
</div>
<div class="section" id="power">
<h3>power<a class="headerlink" href="#power" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2855
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">power</code></dt>
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
<dd><p>This layer applies a power function to a vector element-wise,
which is used in NEURAL TURING MACHINE.</p>
<div class="math">
\[y = x^w\]</div>
<p>where <span class="math">\(x\)</span> is a input vector, <span class="math">\(w\)</span> is scalar weight,
and <span class="math">\(y\)</span> is a output vector.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">power</span> <span class="o">=</span> <span class="n">power</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2871
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2872
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Weight layer.</li>
2873
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="scaling">
<h3>scaling<a class="headerlink" href="#scaling" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
2893
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">scaling</code></dt>
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
<dd><p>A layer for multiplying input vector by weight scalar.</p>
<div class="math">
\[y  = w x\]</div>
<p>where <span class="math">\(x\)</span> is size=dataDim input, <span class="math">\(w\)</span> is size=1 weight,
and <span class="math">\(y\)</span> is size=dataDim output.</p>
<p>Note that the above computation is for one sample. Multiple samples are
processed in one batch.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">scale</span> <span class="o">=</span> <span class="n">scaling</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">layer2</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2910
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
2911
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Weight layer.</li>
2912
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
</div>
<div class="section" id="clip">
<h3>clip<a class="headerlink" href="#clip" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">clip</code></dt>
<dd><blockquote>
<div><p>A layer for clipping the input value by the threshold.</p>
<div class="math">
\[out[i] = \min\left(\max\left(in[i],p_{1}\]</div>
</div></blockquote>
<p>ight),p_{2}
ight)</p>
<blockquote>
<div><div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">clip</span> <span class="o">=</span> <span class="n">clip</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">10</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
2948
<tr class="field-odd field"><th class="field-name">param name:</th><td class="field-body">The name of this layer. It is optional.</td>
2949 2950 2951
</tr>
<tr class="field-even field"><th class="field-name">type name:</th><td class="field-body">basestring</td>
</tr>
2952
<tr class="field-odd field"><th class="field-name">param input:</th><td class="field-body">The input of this layer.</td>
2953 2954 2955 2956 2957
</tr>
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer.</td>
</tr>
<tr class="field-odd field"><th class="field-name">param min:</th><td class="field-body">The lower threshold for clipping.</td>
</tr>
2958
<tr class="field-even field"><th class="field-name">type min:</th><td class="field-body">float</td>
2959 2960 2961
</tr>
<tr class="field-odd field"><th class="field-name">param max:</th><td class="field-body">The upper threshold for clipping.</td>
</tr>
2962
<tr class="field-even field"><th class="field-name">type max:</th><td class="field-body">float</td>
2963
</tr>
2964 2965 2966
<tr class="field-odd field"><th class="field-name">return:</th><td class="field-body">paddle.v2.config_base.Layer object.</td>
</tr>
<tr class="field-even field"><th class="field-name">rtype:</th><td class="field-body">paddle.v2.config_base.Layer</td>
2967 2968 2969 2970 2971 2972
</tr>
</tbody>
</table>
</div></blockquote>
</dd></dl>

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
</div>
<div class="section" id="resize">
<h3>resize<a class="headerlink" href="#resize" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">resize</code></dt>
<dd><p>The resize layer resizes the input matrix with a shape of [Height, Width]
into the output matrix with a shape of [Height x Width / size, size],
where size is the parameter of this layer indicating the output dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
2987
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer.</em>) &#8211; The input of this layer.</li>
2988
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
2989
<li><strong>size</strong> (<em>int</em>) &#8211; The resized output dimension of this layer.</li>
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

3003 3004 3005 3006 3007
</div>
<div class="section" id="slope-intercept">
<h3>slope_intercept<a class="headerlink" href="#slope-intercept" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3008
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">slope_intercept</code></dt>
3009
<dd><p>This layer for applying a slope and an intercept to the input.</p>
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
<div class="math">
\[y = slope * x + intercept\]</div>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">scale</span> <span class="o">=</span> <span class="n">slope_intercept</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">slope</span><span class="o">=-</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">intercept</span><span class="o">=</span><span class="mf">1.0</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3021
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
3022
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3023 3024 3025 3026
<li><strong>slope</strong> (<em>float</em>) &#8211; The scale factor.</li>
<li><strong>intercept</strong> (<em>float</em>) &#8211; The offset.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="tensor">
<h3>tensor<a class="headerlink" href="#tensor" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3045
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">tensor</code></dt>
3046 3047
<dd><p>This layer performs tensor operation on two inputs.
For example:</p>
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
<div class="math">
\[y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1\]</div>
<dl class="docutils">
<dt>In this formular:</dt>
<dd><ul class="first last simple">
<li><span class="math">\(a\)</span>: the first input contains M elements.</li>
<li><span class="math">\(b\)</span>: the second input contains N elements.</li>
<li><span class="math">\(y_{i}\)</span>: the i-th element of y.</li>
<li><span class="math">\(W_{i}\)</span>: the i-th learned weight, shape if [M, N]</li>
<li><span class="math">\(b^\mathrm{T}\)</span>: the transpose of <span class="math">\(b_{2}\)</span>.</li>
</ul>
</dd>
</dl>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">tensor</span> <span class="o">=</span> <span class="n">tensor</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1000</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3070
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3071 3072 3073 3074 3075 3076
<li><strong>a</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input of this layer.</li>
<li><strong>b</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The second input of this layer.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of this layer.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Linear is the default activation.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute. See paddle.v2.attr.ParameterAttribute for
details.</li>
3077 3078 3079 3080
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The parameter attribute for bias. If this parameter is set to
False or an object whose type is not paddle.v2.attr.ParameterAttribute,
no bias is defined. If this parameter is set to True,
the bias is initialized to zero.</li>
3081 3082
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="cos-sim">
<span id="api-v2-layer-cos-sim"></span><h3>cos_sim<a class="headerlink" href="#cos-sim" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3101
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">cos_sim</code></dt>
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
<dd><p>Cosine Similarity Layer. The cosine similarity equation is here.</p>
<div class="math">
\[similarity = cos(\theta) = {\mathbf{a} \cdot \mathbf{b}
\over \|\mathbf{a}\| \|\mathbf{b}\|}\]</div>
<p>The size of a is M, size of b is M*N,
Similarity will be calculated N times by step M. The output size is
N. The scale will be multiplied to similarity.</p>
<p>Note that the above computation is for one sample. Multiple samples are
processed in one batch.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cos</span> <span class="o">=</span> <span class="n">cos_sim</span><span class="p">(</span><span class="n">a</span><span class="o">=</span><span class="n">layer1</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3120
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
<li><strong>a</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; input layer a</li>
<li><strong>b</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; input layer b</li>
<li><strong>scale</strong> (<em>float</em>) &#8211; scale for cosine value. default is 5.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; layer size. NOTE size_a * size should equal size_b.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="trans">
<h3>trans<a class="headerlink" href="#trans" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3144
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">trans</code></dt>
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
<dd><p>A layer for transposing a minibatch matrix.</p>
<div class="math">
\[y = x^\mathrm{T}\]</div>
<p>where <span class="math">\(x\)</span> is (M x N) input, and <span class="math">\(y\)</span> is (N x M) output.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">trans</span> <span class="o">=</span> <span class="n">trans</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3158
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
3159
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; extra layer attributes.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

3174 3175 3176 3177 3178 3179 3180
</div>
<div class="section" id="scale-shift">
<h3>scale_shift<a class="headerlink" href="#scale-shift" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">scale_shift</code></dt>
<dd><p>A layer applies a linear transformation to each element in each row of
3181
the input matrix. For each element, the layer first re-scales it and then
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
adds a bias to it.</p>
<p>This layer is very like the SlopeInterceptLayer, except the scale and
bias are trainable.</p>
<div class="math">
\[y = w * x + b\]</div>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">scale_shift</span> <span class="o">=</span> <span class="n">scale_shift</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3195
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3196
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
3197 3198 3199 3200 3201
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute of scaling. See paddle.v2.attr.ParameterAttribute for
details.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

3215 3216 3217 3218 3219 3220
</div>
</div>
<div class="section" id="sampling-layers">
<h2>Sampling Layers<a class="headerlink" href="#sampling-layers" title="Permalink to this headline"></a></h2>
<div class="section" id="maxid">
<h3>maxid<a class="headerlink" href="#maxid" title="Permalink to this headline"></a></h3>
3221 3222
<dl class="class">
<dt>
3223
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">max_id</code></dt>
3224 3225 3226 3227
<dd><p>A layer for finding the id which has the maximal value for each sample.
The result is stored in output.ids.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">maxid</span> <span class="o">=</span> <span class="n">maxid</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">)</span>
3228 3229
</pre></div>
</div>
3230 3231 3232 3233 3234
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3235
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
3236
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3237 3238
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

3252 3253 3254 3255 3256
</div>
<div class="section" id="sampling-id">
<h3>sampling_id<a class="headerlink" href="#sampling-id" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3257
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">sampling_id</code></dt>
3258
<dd><p>A layer for sampling id from a multinomial distribution from the input layer.
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
Sampling one id for one sample.</p>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">samping_id</span> <span class="o">=</span> <span class="n">sampling_id</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3269
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
3270
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3271 3272
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

3286 3287 3288 3289 3290 3291
</div>
<div class="section" id="multiplex">
<h3>multiplex<a class="headerlink" href="#multiplex" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">multiplex</code></dt>
3292 3293 3294
<dd><p>This layer multiplex multiple layers according to the indexes,
which are provided by the first input layer.
inputs[0]: the indexes of the layers to form the output of size batchSize.
3295
inputs[1:N]; the candidate output data.
3296 3297
For each index i from 0 to batchSize - 1, the i-th row of the output is the
the same to the i-th row of the (index[i] + 1)-th layer.</p>
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
<p>For each i-th row of output:
.. math:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">y</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">x_</span><span class="p">{</span><span class="n">x_</span><span class="p">{</span><span class="mi">0</span><span class="p">}[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="mi">1</span><span class="p">}[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">],</span> <span class="n">j</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span> <span class="o">...</span> <span class="p">,</span> <span class="p">(</span><span class="n">x_</span><span class="p">{</span><span class="mi">1</span><span class="p">}</span><span class="o">.</span><span class="n">width</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<p>where, y is output. <span class="math">\(x_{k}\)</span> is the k-th input layer and
<span class="math">\(k = x_{0}[i] + 1\)</span>.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">maxid</span> <span class="o">=</span> <span class="n">multiplex</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layers</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>list of paddle.v2.config_base.Layer</em>) &#8211; Input layers.</li>
3315
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3316 3317
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

3331 3332 3333 3334 3335 3336 3337 3338
</div>
</div>
<div class="section" id="slicing-and-joining-layers">
<h2>Slicing and Joining Layers<a class="headerlink" href="#slicing-and-joining-layers" title="Permalink to this headline"></a></h2>
<div class="section" id="pad">
<h3>pad<a class="headerlink" href="#pad" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3339
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">pad</code></dt>
3340
<dd><p>This operation pads zeros to the input data according to pad_c,pad_h
3341 3342 3343 3344 3345 3346
and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
dimension. And the input data shape is NCHW.</p>
<p>For example, pad_c=[2,3] means padding 2 zeros before the input data
and 3 zeros after the input data in the channel dimension. pad_h means
padding zeros in the height dimension. pad_w means padding zeros in the
width dimension.</p>
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
<p>For example,</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nb">input</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>  <span class="o">=</span> <span class="p">[</span>
                    <span class="p">[</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">]]</span> <span class="p">],</span>
                    <span class="p">[</span> <span class="p">[[</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">7</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">3</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">]]</span> <span class="p">]</span>
                  <span class="p">]</span>

<span class="n">pad_c</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">pad_h</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="n">pad_w</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]</span>

<span class="n">output</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="o">=</span> <span class="p">[</span>
                    <span class="p">[</span> <span class="p">[[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]]</span> <span class="p">],</span>
                    <span class="p">[</span> <span class="p">[[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">4</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">7</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">3</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">]],</span>
                      <span class="p">[[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]]</span> <span class="p">]</span>
                  <span class="p">]</span>
</pre></div>
</div>
<p>The simply usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">pad</span> <span class="o">=</span> <span class="n">pad</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">ipt</span><span class="p">,</span>
                <span class="n">pad_c</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span><span class="mi">4</span><span class="p">],</span>
                <span class="n">pad_h</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],</span>
                <span class="n">pad_w</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">])</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3381
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
3382 3383 3384 3385 3386
<li><strong>pad_c</strong> (<em>list | None</em>) &#8211; The padding size in the channel dimension.</li>
<li><strong>pad_h</strong> (<em>list | None</em>) &#8211; The padding size in the height dimension.</li>
<li><strong>pad_w</strong> (<em>list | None</em>) &#8211; The padding size in the width dimension.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3387
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="cost-layers">
<span id="api-v2-layer-costs"></span><h2>Cost Layers<a class="headerlink" href="#cost-layers" title="Permalink to this headline"></a></h2>
<div class="section" id="cross-entropy-cost">
<h3>cross_entropy_cost<a class="headerlink" href="#cross-entropy-cost" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3409
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">cross_entropy_cost</code></dt>
3410
<dd><p>A loss layer for multi class entropy.</p>
3411
<p>The example usage is:</p>
3412 3413 3414 3415 3416 3417 3418 3419 3420
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">cross_entropy</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                     <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3421
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input layer.</li>
3422
<li><strong>label</strong> &#8211; The input label.</li>
3423 3424
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>coeff</strong> (<em>float</em>) &#8211; The weight of the gradient in the back propagation.
3425 3426 3427
1.0 is the default value.</li>
<li><strong>weight</strong> (<em>LayerOutout</em>) &#8211; The weight layer defines a weight for each sample in the
mini-batch. It is optional.</li>
3428 3429
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3430 3431 3432 3433 3434 3435
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
3436
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="cross-entropy-with-selfnorm-cost">
<h3>cross_entropy_with_selfnorm_cost<a class="headerlink" href="#cross-entropy-with-selfnorm-cost" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3448
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">cross_entropy_with_selfnorm_cost</code></dt>
3449 3450
<dd><p>A loss layer for multi class entropy with selfnorm.
Input should be a vector of positive numbers, without normalization.</p>
3451
<p>The example usage is:</p>
3452 3453 3454 3455 3456 3457 3458 3459 3460
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">cross_entropy_with_selfnorm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                                   <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3461
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input layer.</li>
3462
<li><strong>label</strong> &#8211; The input label.</li>
3463 3464
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>coeff</strong> (<em>float</em>) &#8211; The weight of the gradient in the back propagation.
3465
1.0 is the default value.</li>
3466 3467 3468
<li><strong>softmax_selfnorm_alpha</strong> (<em>float</em>) &#8211; The scale factor affects the cost.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3469 3470 3471 3472 3473 3474
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
3475
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="multi-binary-label-cross-entropy-cost">
<h3>multi_binary_label_cross_entropy_cost<a class="headerlink" href="#multi-binary-label-cross-entropy-cost" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3487
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">multi_binary_label_cross_entropy_cost</code></dt>
3488
<dd><p>A loss layer for multi binary label cross entropy.</p>
3489
<p>The example usage is:</p>
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">multi_binary_label_cross_entropy</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                                        <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input layer.</li>
<li><strong>label</strong> &#8211; The input label.</li>
3501 3502
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>coeff</strong> (<em>float</em>) &#8211; The weight of the gradient in the back propagation.
3503
1.0 is the default value.</li>
3504 3505
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
3520 3521
<div class="section" id="huber-regression-cost">
<h3>huber_regression_cost<a class="headerlink" href="#huber-regression-cost" title="Permalink to this headline"></a></h3>
3522 3523
<dl class="class">
<dt>
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">huber_regression_cost</code></dt>
<dd><blockquote>
<div>In statistics, the Huber loss is a loss function used in robust regression,
that is less sensitive to outliers in data than the squared error loss.
Given a prediction f(x), a label y and <span class="math">\(\delta\)</span>, the loss function
is defined as:</div></blockquote>
<p>ight )^2, left | y-f(x)
ight <a href="#id2"><span class="problematic" id="id3">|</span></a>leq delta</p>
<blockquote>
<div>loss = delta left | y-f(x)</div></blockquote>
<p>ight <a href="#id4"><span class="problematic" id="id5">|</span></a>-0.5delta ^2, otherwise</p>
<blockquote>
<div><p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">huber_regression_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
3538 3539 3540 3541 3542 3543
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3544
<tr class="field-odd field"><th class="field-name">param input:</th><td class="field-body">The first input layer.</td>
3545
</tr>
3546
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer</td>
3547
</tr>
3548 3549
<tr class="field-odd field"><th class="field-name">param label:</th><td class="field-body">The input label.</td>
</tr>
3550
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer</td>
3551
</tr>
3552
<tr class="field-odd field"><th class="field-name">param name:</th><td class="field-body">The name of this layer. It is optional.</td>
3553
</tr>
3554
<tr class="field-even field"><th class="field-name">type name:</th><td class="field-body">basestring</td>
3555 3556 3557
</tr>
<tr class="field-odd field"><th class="field-name">param delta:</th><td class="field-body">The difference between the observed and predicted values.</td>
</tr>
3558
<tr class="field-even field"><th class="field-name">type delta:</th><td class="field-body">float</td>
3559
</tr>
3560
<tr class="field-odd field"><th class="field-name">param coeff:</th><td class="field-body">The weight of the gradient in the back propagation.
3561
1.0 is the default value.</td>
3562
</tr>
3563
<tr class="field-even field"><th class="field-name">type coeff:</th><td class="field-body">float</td>
3564 3565
</tr>
<tr class="field-odd field"><th class="field-name" colspan="2">param layer_attr:</th></tr>
3566 3567
<tr class="field-odd field"><td>&#160;</td><td class="field-body">The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</td>
3568 3569 3570 3571 3572 3573 3574
</tr>
<tr class="field-even field"><th class="field-name" colspan="2">type layer_attr:</th></tr>
<tr class="field-even field"><td>&#160;</td><td class="field-body">paddle.v2.attr.ExtraAttribute</td>
</tr>
<tr class="field-odd field"><th class="field-name">return:</th><td class="field-body">paddle.v2.config_base.Layer object.</td>
</tr>
<tr class="field-even field"><th class="field-name">rtype:</th><td class="field-body">paddle.v2.config_base.Layer.</td>
3575 3576 3577
</tr>
</tbody>
</table>
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
</div></blockquote>
</dd></dl>

</div>
<div class="section" id="huber-classification-cost">
<h3>huber_classification_cost<a class="headerlink" href="#huber-classification-cost" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">huber_classification_cost</code></dt>
<dd><blockquote>
<div>For classification purposes, a variant of the Huber loss called modified Huber
is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
a true binary class label :math:<a href="#id6"><span class="problematic" id="id7">`</span></a>yin left {-1, 1</div></blockquote>
<dl class="docutils">
<dt>ight }`, the modified Huber</dt>
<dd>loss is defined as:</dd>
<dt>ight )^2, yf(x)geq 1</dt>
<dd><blockquote class="first">
<div>loss = -4yf(x),  ext{otherwise}</div></blockquote>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">huber_classification_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="last docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">param input:</th><td class="field-body">The first input layer.</td>
</tr>
3607
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer</td>
3608 3609 3610
</tr>
<tr class="field-odd field"><th class="field-name">param label:</th><td class="field-body">The input label.</td>
</tr>
3611
<tr class="field-even field"><th class="field-name">type input:</th><td class="field-body">paddle.v2.config_base.Layer</td>
3612
</tr>
3613
<tr class="field-odd field"><th class="field-name">param name:</th><td class="field-body">The name of this layer. It is optional.</td>
3614
</tr>
3615
<tr class="field-even field"><th class="field-name">type name:</th><td class="field-body">basestring</td>
3616
</tr>
3617
<tr class="field-odd field"><th class="field-name">param coeff:</th><td class="field-body">The weight of the gradient in the back propagation.
3618
1.0 is the default value.</td>
3619
</tr>
3620
<tr class="field-even field"><th class="field-name">type coeff:</th><td class="field-body">float</td>
3621 3622
</tr>
<tr class="field-odd field"><th class="field-name" colspan="2">param layer_attr:</th></tr>
3623 3624
<tr class="field-odd field"><td>&#160;</td><td class="field-body">The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</td>
3625 3626 3627 3628 3629 3630
</tr>
<tr class="field-even field"><th class="field-name" colspan="2">type layer_attr:</th></tr>
<tr class="field-even field"><td>&#160;</td><td class="field-body">paddle.v2.attr.ExtraAttribute</td>
</tr>
<tr class="field-odd field"><th class="field-name">return:</th><td class="field-body">paddle.v2.config_base.Layer object.</td>
</tr>
3631
<tr class="field-even field"><th class="field-name">rtype:</th><td class="field-body">paddle.v2.config_base.Layer</td>
3632 3633 3634 3635 3636
</tr>
</tbody>
</table>
</dd>
</dl>
3637 3638 3639 3640 3641 3642 3643
</dd></dl>

</div>
<div class="section" id="lambda-cost">
<h3>lambda_cost<a class="headerlink" href="#lambda-cost" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3644
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">lambda_cost</code></dt>
3645
<dd><p>lambdaCost for lambdaRank LTR approach.</p>
3646
<p>The example usage is:</p>
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">lambda_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                   <span class="n">score</span><span class="o">=</span><span class="n">score</span><span class="p">,</span>
                   <span class="n">NDCG_num</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
                   <span class="n">max_sort_size</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3658 3659 3660
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input of this layer, which is often a document
samples list of the same query and whose type must be sequence.</li>
<li><strong>score</strong> &#8211; The scores of the samples.</li>
3661
<li><strong>NDCG_num</strong> (<em>int</em>) &#8211; The size of NDCG (Normalized Discounted Cumulative Gain),
3662
e.g., 5 for NDCG&#64;5. It must be less than or equal to the
3663 3664 3665 3666 3667 3668 3669 3670 3671
minimum size of the list.</li>
<li><strong>max_sort_size</strong> (<em>int</em>) &#8211; The size of partial sorting in calculating gradient. If
max_sort_size is equal to -1 or greater than the number
of the samples in the list, then the algorithm will sort
the entire list to compute the gradient. In other cases,
max_sort_size must be greater than or equal to NDCG_num.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
3686 3687
<div class="section" id="square-error-cost">
<h3>square_error_cost<a class="headerlink" href="#square-error-cost" title="Permalink to this headline"></a></h3>
3688 3689
<dl class="class">
<dt>
3690 3691
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">square_error_cost</code></dt>
<dd><p>sum of square error cost:</p>
3692
<div class="math">
3693
\[cost = \sum_{i=1}^N(t_i-y_i)^2\]</div>
3694
<table class="docutils field-list" frame="void" rules="none">
3695 3696 3697
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
3698
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3699
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
3700 3701 3702 3703 3704 3705 3706 3707
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input layer.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input label.</li>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The weight layer defines a weight for each sample in the
mini-batch. It is optional.</li>
<li><strong>coeff</strong> (<em>float</em>) &#8211; The weight of the gradient in the back propagation.
1.0 is the default value.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3708 3709
</ul>
</td>
3710
</tr>
3711 3712
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
3713
</tr>
3714 3715
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
3716 3717 3718 3719
</tr>
</tbody>
</table>
</dd></dl>
3720 3721

</div>
3722 3723
<div class="section" id="rank-cost">
<h3>rank_cost<a class="headerlink" href="#rank-cost" title="Permalink to this headline"></a></h3>
3724 3725
<dl class="class">
<dt>
3726
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">rank_cost</code></dt>
3727 3728 3729 3730 3731 3732
<dd><p>A cost Layer for learning to rank using gradient descent.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Learning to Rank using Gradient Descent
<a class="reference external" href="http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf">http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf</a></dd>
</dl>
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
<div class="math">
\[ \begin{align}\begin{aligned}C_{i,j} &amp; = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})\\o_{i,j} &amp; =  o_i - o_j\\\tilde{P_{i,j}} &amp; = \{0, 0.5, 1\} \ or \ \{0, 1\}\end{aligned}\end{align} \]</div>
<dl class="docutils">
<dt>In this formula:</dt>
<dd><ul class="first last simple">
<li><span class="math">\(C_{i,j}\)</span> is the cross entropy cost.</li>
<li><span class="math">\(\tilde{P_{i,j}}\)</span> is the label. 1 means positive order
and 0 means reverse order.</li>
<li><span class="math">\(o_i\)</span> and <span class="math">\(o_j\)</span>: the left output and right output.
Their dimension is one.</li>
</ul>
</dd>
</dl>
3746
<p>The example usage is:</p>
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">rank_cost</span><span class="p">(</span><span class="n">left</span><span class="o">=</span><span class="n">out_left</span><span class="p">,</span>
                 <span class="n">right</span><span class="o">=</span><span class="n">out_right</span><span class="p">,</span>
                 <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>left</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input, the size of this layer is 1.</li>
<li><strong>right</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The right input, the size of this layer is 1.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Label is 1 or 0, means positive order and reverse order.</li>
3760 3761 3762 3763 3764 3765 3766
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The weight layer defines a weight for each sample in the
mini-batch. It is optional.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>coeff</strong> (<em>float</em>) &#8211; The weight of the gradient in the back propagation.
1.0 is the default value.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="sum-cost">
<h3>sum_cost<a class="headerlink" href="#sum-cost" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3785
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">sum_cost</code></dt>
3786
<dd><p>A loss layer which calculates the sum of the input as loss.</p>
3787
<p>The example usage is:</p>
3788 3789 3790 3791 3792 3793 3794 3795
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">sum_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3796 3797 3798 3799
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="crf">
<h3>crf<a class="headerlink" href="#crf" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3818
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">crf</code></dt>
3819 3820
<dd><p>A layer for calculating the cost of sequential conditional random
field model.</p>
3821
<p>The example usage is:</p>
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">crf</span> <span class="o">=</span> <span class="n">crf</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span>
                <span class="n">size</span><span class="o">=</span><span class="n">label_dim</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3832 3833
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input layer.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input label.</li>
3834
<li><strong>size</strong> (<em>int</em>) &#8211; The category number.</li>
3835 3836 3837 3838 3839 3840 3841 3842 3843
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The weight layer defines a weight for each sample in the
mini-batch. It is optional.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute. See paddle.v2.attr.ParameterAttribute for
details.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>coeff</strong> (<em>float</em>) &#8211; The weight of the gradient in the back propagation.
1.0 is the default value.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="crf-decoding">
<h3>crf_decoding<a class="headerlink" href="#crf-decoding" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3862
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">crf_decoding</code></dt>
3863 3864
<dd><p>A layer for calculating the decoding sequence of sequential conditional
random field model. The decoding sequence is stored in output.ids.
3865 3866 3867
If the input &#8216;label&#8217; is provided, it is treated as the ground-truth label, and
this layer will also calculate error. output.value[i] is 1 for an incorrect
decoding and 0 for the correct.</p>
3868
<p>The example usage is:</p>
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">crf_decoding</span> <span class="o">=</span> <span class="n">crf_decoding</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                                  <span class="n">size</span><span class="o">=</span><span class="n">label_dim</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The first input layer.</li>
3879 3880 3881 3882 3883 3884 3885
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of this layer.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer | None</em>) &#8211; The input label.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute. See paddle.v2.attr.ParameterAttribute for
details.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="ctc">
<h3>ctc<a class="headerlink" href="#ctc" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3904
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">ctc</code></dt>
3905
<dd><p>Connectionist Temporal Classification (CTC) is designed for temporal
3906
classication task. e.g. sequence labeling problems where the
3907
alignment between the inputs and the target labels is unknown.</p>
3908 3909 3910 3911 3912 3913
<dl class="docutils">
<dt>Reference:</dt>
<dd>Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
<a class="reference external" href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf">http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf</a></dd>
</dl>
3914 3915
<div class="admonition note">
<p class="first admonition-title">Note</p>
3916 3917 3918 3919 3920
<p class="last">Considering the &#8216;blank&#8217; label needed by CTC, you need to use (num_classes + 1)
as the size of the input, where num_classes is the category number.
And the &#8216;blank&#8217; is the last category index. So the size of &#8216;input&#8217; layer (e.g.
fc with softmax activation) should be (num_classes + 1). The size of
ctc should also be (num_classes + 1).</p>
3921
</div>
3922
<p>The example usage is:</p>
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">ctc</span> <span class="o">=</span> <span class="n">ctc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span>
                <span class="n">size</span><span class="o">=</span><span class="mi">9055</span><span class="p">,</span>
                <span class="n">norm_by_times</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3934
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
3935 3936 3937 3938 3939 3940
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input label.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of this layer, which must be equal to (category number + 1).</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>norm_by_times</strong> (<em>bool</em>) &#8211; Whether to do normalization by times. False is the default.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="warp-ctc">
<h3>warp_ctc<a class="headerlink" href="#warp-ctc" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
3959
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">warp_ctc</code></dt>
3960 3961 3962 3963 3964 3965
<dd><p>A layer intergrating the open-source <a class="reference external" href="https://github.com/baidu-research/warp-ctc">warp-ctc</a> library, which is used in
<a class="reference external" href="https://arxiv.org/pdf/1512.02595v1.pdf">Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin</a>, to compute Connectionist Temporal
Classification (CTC) loss. Besides, another <a class="reference external" href="https://github.com/gangliao/warp-ctc">warp-ctc</a> repository, which is forked from
the official one, is maintained to enable more compiling options. During the
building process, PaddlePaddle will clone the source codes, build and
install it to <code class="code docutils literal"><span class="pre">third_party/install/warpctc</span></code> directory.</p>
3966 3967 3968 3969 3970 3971
<dl class="docutils">
<dt>Reference:</dt>
<dd>Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
<a class="reference external" href="http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf">http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf</a></dd>
</dl>
3972 3973 3974
<div class="admonition note">
<p class="first admonition-title">Note</p>
<ul class="last simple">
3975 3976 3977
<li>Let num_classes represents the category number. Considering the &#8216;blank&#8217;
label needed by CTC, you need to use (num_classes + 1) as the size of
warp_ctc layer.</li>
3978
<li>You can set &#8216;blank&#8217; to any value ranged in [0, num_classes], which
3979
should be consistent with those used in your labels.</li>
3980
<li>As a native &#8216;softmax&#8217; activation is interated to the warp-ctc library,
3981
&#8216;linear&#8217; activation is expected to be used instead in the &#8216;input&#8217; layer.</li>
3982 3983
</ul>
</div>
3984
<p>The example usage is:</p>
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">ctc</span> <span class="o">=</span> <span class="n">warp_ctc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                     <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span>
                     <span class="n">size</span><span class="o">=</span><span class="mi">1001</span><span class="p">,</span>
                     <span class="n">blank</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span>
                     <span class="n">norm_by_times</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
3997
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
3998 3999 4000 4001 4002 4003 4004
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input label.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of this layer, which must be equal to (category number + 1).</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>blank</strong> (<em>int</em>) &#8211; The &#8216;blank&#8217; label used in ctc.</li>
<li><strong>norm_by_times</strong> (<em>bool</em>) &#8211; Whether to do normalization by times. False is the default.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="nce">
<h3>nce<a class="headerlink" href="#nce" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
4023
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">nce</code></dt>
4024
<dd><p>Noise-contrastive estimation.</p>
4025 4026 4027 4028 4029
<dl class="docutils">
<dt>Reference:</dt>
<dd>A fast and simple algorithm for training neural probabilistic language
models. <a class="reference external" href="https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf">https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf</a></dd>
</dl>
4030
<p>The example usage is:</p>
4031 4032
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">nce</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="n">layer2</span><span class="p">,</span>
                 <span class="n">param_attr</span><span class="o">=</span><span class="p">[</span><span class="n">attr1</span><span class="p">,</span> <span class="n">attr2</span><span class="p">],</span> <span class="n">weight</span><span class="o">=</span><span class="n">layer3</span><span class="p">,</span>
4033 4034 4035 4036 4037 4038 4039 4040
                 <span class="n">num_classes</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">neg_distribution</span><span class="o">=</span><span class="p">[</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">0.3</span><span class="p">,</span><span class="mf">0.6</span><span class="p">])</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
4041
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
4042 4043
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple | collections.Sequence</em>) &#8211; The first input of this layer.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input label.</li>
4044
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The weight layer defines a weight for each sample in the
4045 4046 4047 4048 4049 4050 4051
mini-batch. It is optional.</li>
<li><strong>num_classes</strong> (<em>int</em>) &#8211; The number of classes.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Sigmoid is the default activation.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute. See paddle.v2.attr.ParameterAttribute for
details.</li>
<li><strong>num_neg_samples</strong> (<em>int</em>) &#8211; The number of sampled negative labels. 10 is the
default value.</li>
4052 4053 4054
<li><strong>neg_distribution</strong> (<em>list | tuple | collections.Sequence | None</em>) &#8211; The discrete noisy distribution over the output
space from which num_neg_samples negative labels
are sampled. If this parameter is not set, a
4055
uniform distribution will be used. A user-defined
4056 4057 4058
distribution is a list whose length must be equal
to the num_classes. Each member of the list defines
the probability of a class given input x.</li>
4059 4060 4061 4062
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The parameter attribute for bias. If this parameter is set to
False or an object whose type is not paddle.v2.attr.ParameterAttribute,
no bias is defined. If this parameter is set to True,
the bias is initialized to zero.</li>
4063 4064
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
4065 4066 4067
</ul>
</td>
</tr>
4068
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="hsigmoid">
<h3>hsigmoid<a class="headerlink" href="#hsigmoid" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
4083
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">hsigmoid</code></dt>
4084 4085 4086 4087 4088 4089
<dd><p>Organize the classes into a binary tree. At each node, a sigmoid function
is used to calculate the probability of belonging to the right branch.
This idea is from &#8220;F. Morin, Y. Bengio (AISTATS 05):
Hierarchical Probabilistic Neural Network Language Model.&#8221;</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">hsigmoid</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">,</span> <span class="n">layer2</span><span class="p">],</span>
4090
                <span class="n">label</span><span class="o">=</span><span class="n">data</span><span class="p">)</span>
4091 4092 4093 4094 4095 4096 4097
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
4098
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple</em>) &#8211; The input of this layer.</li>
4099
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Label layer.</li>
4100
<li><strong>num_classes</strong> (<em>int | None</em>) &#8211; number of classes.</li>
4101
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
4102 4103 4104
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) &#8211; The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
4105
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None</em>) &#8211; Parameter Attribute. None means default parameter.</li>
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; Extra Layer Attribute.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

4120 4121 4122 4123 4124
</div>
<div class="section" id="smooth-l1-cost">
<h3>smooth_l1_cost<a class="headerlink" href="#smooth-l1-cost" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
4125
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">smooth_l1_cost</code></dt>
4126
<dd><p>This is a L1 loss but more smooth. It requires that the
4127
sizes of input and label are equal. The formula is as follows,</p>
4128 4129 4130 4131 4132
<div class="math">
\[L = \sum_{i} smooth_{L1}(input_i - label_i)\]</div>
<p>in which</p>
<div class="math">
\[\begin{split}smooth_{L1}(x) = \begin{cases} 0.5x^2&amp; \text{if}  \ |x| &lt; 1 \\ |x|-0.5&amp; \text{otherwise} \end{cases}\end{split}\]</div>
4133 4134 4135 4136 4137
<dl class="docutils">
<dt>Reference:</dt>
<dd>Fast R-CNN
<a class="reference external" href="https://arxiv.org/pdf/1504.08083v2.pdf">https://arxiv.org/pdf/1504.08083v2.pdf</a></dd>
</dl>
4138
<p>The example usage is:</p>
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cost</span> <span class="o">=</span> <span class="n">smooth_l1_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
                      <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input layer.</li>
<li><strong>label</strong> &#8211; The input label.</li>
4150 4151
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
<li><strong>coeff</strong> (<em>float</em>) &#8211; The weight of the gradient in the back propagation.
4152
1.0 is the default value.</li>
4153 4154
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
</div>
<div class="section" id="multibox-loss">
<h3>multibox_loss<a class="headerlink" href="#multibox-loss" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">multibox_loss</code></dt>
<dd><p>Compute the location loss and the confidence loss for ssd.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
4180
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
<li><strong>input_loc</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer</em>) &#8211; The input predict locations.</li>
<li><strong>input_conf</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer</em>) &#8211; The input priorbox confidence.</li>
<li><strong>priorbox</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input priorbox location and the variance.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input label.</li>
<li><strong>num_classes</strong> (<em>int</em>) &#8211; The number of the classification.</li>
<li><strong>overlap_threshold</strong> (<em>float</em>) &#8211; The threshold of the overlap.</li>
<li><strong>neg_pos_ratio</strong> (<em>float</em>) &#8211; The ratio of the negative bbox to the positive bbox.</li>
<li><strong>neg_overlap</strong> (<em>float</em>) &#8211; The negative bbox overlap threshold.</li>
<li><strong>background_id</strong> (<em>int</em>) &#8211; The background class index.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

4200 4201 4202 4203 4204 4205 4206 4207
</div>
</div>
<div class="section" id="check-layer">
<h2>Check Layer<a class="headerlink" href="#check-layer" title="Permalink to this headline"></a></h2>
<div class="section" id="eos">
<h3>eos<a class="headerlink" href="#eos" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
4208
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">eos</code></dt>
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
<dd><p>A layer for checking EOS for each sample:
- output_id = (input_id == conf.eos_id)</p>
<p>The result is stored in output_.ids.
It is used by recurrent layer group.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">eos</span> <span class="o">=</span> <span class="n">eos</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span> <span class="n">eos_id</span><span class="o">=</span><span class="nb">id</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
4222
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
4223
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
4224 4225 4226
<li><strong>eos_id</strong> (<em>int</em>) &#8211; End id of sequence</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
4227 4228 4229 4230 4231 4232 4233
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="miscs">
<h2>Miscs<a class="headerlink" href="#miscs" title="Permalink to this headline"></a></h2>
<div class="section" id="dropout">
<h3>dropout<a class="headerlink" href="#dropout" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">dropout</code></dt>
4249 4250 4251 4252
<dd><p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">dropout</span> <span class="o">=</span> <span class="n">dropout</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span> <span class="n">dropout_rate</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
</pre></div>
</div>
4253 4254 4255 4256 4257
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
4258
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
4259
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
4260
<li><strong>dropout_rate</strong> (<em>float</em>) &#8211; The probability of dropout.</li>
4261 4262 4263
</ul>
</td>
</tr>
4264 4265 4266 4267
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
4268 4269 4270 4271 4272 4273
</td>
</tr>
</tbody>
</table>
</dd></dl>

4274 4275 4276 4277 4278 4279 4280 4281 4282
</div>
</div>
<div class="section" id="activation-with-learnable-parameter">
<h2>Activation with learnable parameter<a class="headerlink" href="#activation-with-learnable-parameter" title="Permalink to this headline"></a></h2>
<div class="section" id="prelu">
<h3>prelu<a class="headerlink" href="#prelu" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">prelu</code></dt>
4283
<dd><p>The Parametric Relu activation that actives outputs with a learnable weight.</p>
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
<dl class="docutils">
<dt>Reference:</dt>
<dd>Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification <a class="reference external" href="http://arxiv.org/pdf/1502.01852v1.pdf">http://arxiv.org/pdf/1502.01852v1.pdf</a></dd>
</dl>
<div class="math">
\[\begin{split}z_i &amp;\quad if \quad z_i &gt; 0 \\
a_i * z_i  &amp;\quad \mathrm{otherwise}\end{split}\]</div>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">prelu</span> <span class="o">=</span> <span class="n">prelu</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">layers</span><span class="p">,</span> <span class="n">partial_sum</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
4301
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
4302
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
4303
<li><strong>partial_sum</strong> (<em>int</em>) &#8211; <p>this parameter makes a group of inputs share the same weight.</p>
4304 4305
<ul>
<li>partial_sum = 1, indicates the element-wise activation: each element has a weight.</li>
4306 4307
<li>partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.</li>
<li>partial_sum = number of outputs, indicates all elements share the same weight.</li>
4308 4309
</ul>
</li>
4310 4311 4312
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute. See paddle.v2.attr.ParameterAttribute for details.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; The extra layer attribute. See paddle.v2.attr.ExtraAttribute for
details.</li>
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

4326 4327 4328 4329 4330 4331 4332 4333 4334
</div>
<div class="section" id="gated-unit">
<h3>gated_unit<a class="headerlink" href="#gated-unit" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">gated_unit</code></dt>
<dd><p>The gated unit layer implements a simple gating mechanism over the input.
The input <span class="math">\(X\)</span> is first projected into a new space <span class="math">\(X'\)</span>, and
it is also used to produce a gate weight <span class="math">\(\sigma\)</span>. Element-wise
4335
product between <a href="#id10"><span class="problematic" id="id11">:match:`X&#8217;`</span></a> and <span class="math">\(\sigma\)</span> is finally returned.</p>
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
<dl class="docutils">
<dt>Reference:</dt>
<dd>Language Modeling with Gated Convolutional Networks
<a class="reference external" href="https://arxiv.org/abs/1612.08083">https://arxiv.org/abs/1612.08083</a></dd>
</dl>
<div class="math">
\[y=\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)\]</div>
<p>The example usage is:</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
4349
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input of this layer.</li>
4350
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of this layer&#8217;s output.</li>
4351 4352
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type of the projection. paddle.v2.activation.Linear is the default
activation.</li>
4353
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
4354 4355 4356 4357
<li><strong>gate_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; The extra layer attribute of the gate. See paddle.v2.attr.ExtraAttribute for
details.</li>
<li><strong>gate_param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute of the gate. See paddle.v2.attr.ParameterAttribute
for details.</li>
4358
<li><strong>gate_bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | bool | None | Any</em>) &#8211; The bias attribute of the gate. If this parameter is set to False or
4359
an object whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined.
4360
If this parameter is set to True, the bias is initialized to zero.</li>
4361 4362 4363 4364
<li><strong>inproj_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; Extra layer attributes of the projection. See paddle.v2.attr.ExtraAttribute for
details.</li>
<li><strong>inproj_param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) &#8211; The parameter attribute of the projection. See paddle.v2.attr.ParameterAttribute
for details.</li>
4365
<li><strong>inproj_bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | bool | None | Any</em>) &#8211; The bias attribute of the projection. If this parameter is set to False
4366
or an object whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined.
4367
If this parameter is set to True, the bias is initialized to zero.</li>
4368 4369
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute | None</em>) &#8211; Extra layer attribute of the product. See paddle.v2.attr.ExtraAttribute for
details.</li>
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">paddle.v2.config_base.Layer object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
</div>
</div>
<div class="section" id="detection-output-layer">
<h2>Detection output Layer<a class="headerlink" href="#detection-output-layer" title="Permalink to this headline"></a></h2>
<div class="section" id="detection-output">
<h3>detection_output<a class="headerlink" href="#detection-output" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">detection_output</code></dt>
<dd><p>Apply the NMS to the output of network and compute the predict bounding
4393 4394
box location. The output&#8217;s shape of this layer could be zero if there is
no valid bounding box.</p>
4395 4396 4397 4398 4399
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
4400
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of this layer. It is optional.</li>
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
<li><strong>input_loc</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer.</em>) &#8211; The input predict locations.</li>
<li><strong>input_conf</strong> (<em>paddle.v2.config_base.Layer | List of paddle.v2.config_base.Layer.</em>) &#8211; The input priorbox confidence.</li>
<li><strong>priorbox</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; The input priorbox location and the variance.</li>
<li><strong>num_classes</strong> (<em>int</em>) &#8211; The number of the classification.</li>
<li><strong>nms_threshold</strong> (<em>float</em>) &#8211; The Non-maximum suppression threshold.</li>
<li><strong>nms_top_k</strong> (<em>int</em>) &#8211; The bbox number kept of the NMS&#8217;s output</li>
<li><strong>keep_top_k</strong> (<em>int</em>) &#8211; The bbox number kept of the layer&#8217;s output</li>
<li><strong>confidence_threshold</strong> (<em>float</em>) &#8211; The classification confidence threshold</li>
<li><strong>background_id</strong> (<em>int</em>) &#8211; The background class index.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">paddle.v2.config_base.Layer</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
4431
        <a href="evaluators.html" class="btn btn-neutral float-right" title="Evaluators" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
      
      
        <a href="activation.html" class="btn btn-neutral" title="Activation" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
4468 4469
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
4470 4471 4472 4473 4474
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
4475
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>