<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple | collections.Sequence</em>) – The input layers. It could be a paddle.v2.config_base.Layer of list/tuple of paddle.v2.config_base.Layer.</li>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) – weight layer, can be None(default)</li>
<li><strong>num_classes</strong> (<em>int</em>) – number of classes.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation type. paddle.v2.activation.Sigmoid is the default.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) – The Parameter Attribute|list.</li>
<li><strong>num_neg_samples</strong> (<em>int</em>) – number of negative samples. Default is 10.</li>
<li><strong>neg_distribution</strong> (<em>list | tuple | collections.Sequence | None</em>) – The distribution for generating the random negative labels.
A uniform distribution will be used if not provided.
If not None, its length must be equal to num_classes.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) – The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple | collections.Sequence</em>) – The input layers. It should be a paddle.v2.config_base.Layer or a list/tuple
of paddle.v2.config_base.Layer.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) – The ground truth.</li>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) – The weight layer defines a weight for each sample in the
mini-batch. The default value is None.</li>
<li><strong>num_classes</strong> (<em>int</em>) – The class number.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|list</em>) – The parameter attributes.</li>
<li><strong>num_neg_samples</strong> (<em>int</em>) – The number of sampled negative labels. The default
value is 10.</li>
<li><strong>neg_distribution</strong> (<em>list | tuple | collections.Sequence | None</em>) – The discrete noisy distribution over the output
space from which num_neg_samples negative labels
are sampled. If this parameter is not set, a
uniform distribution will be used. A user defined
distribution is a list whose length must be equal
to the num_classes. Each member of the list defines
the probability of a class given input x.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) – The attribute for bias. If this parameter is set False or
any object whose type is not paddle.v2.attr.ParameterAttribute, no bias
is added. If this parameter is set True, the bias is
initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>
<li><strong>name</strong> (<em>basestring</em>) – The name of this layer. It is optional.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple | collections.Sequence</em>) – The input layers. It could be a paddle.v2.config_base.Layer of list/tuple of paddle.v2.config_base.Layer.</li>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) – weight layer, can be None(default)</li>
<li><strong>num_classes</strong> (<em>int</em>) – number of classes.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) – Activation type. paddle.v2.activation.Sigmoid is the default.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute</em>) – The Parameter Attribute|list.</li>
<li><strong>num_neg_samples</strong> (<em>int</em>) – number of negative samples. Default is 10.</li>
<li><strong>neg_distribution</strong> (<em>list | tuple | collections.Sequence | None</em>) – The distribution for generating the random negative labels.
A uniform distribution will be used if not provided.
If not None, its length must be equal to num_classes.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) – The bias attribute. If the parameter is set to False or an object
whose type is not paddle.v2.attr.ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.</li>
<li><strong>input</strong> (<em>paddle.v2.config_base.Layer | list | tuple | collections.Sequence</em>) – The input layers. It should be a paddle.v2.config_base.Layer or a list/tuple
of paddle.v2.config_base.Layer.</li>
<li><strong>label</strong> (<em>paddle.v2.config_base.Layer</em>) – The ground truth.</li>
<li><strong>weight</strong> (<em>paddle.v2.config_base.Layer</em>) – The weight layer defines a weight for each sample in the
mini-batch. The default value is None.</li>
<li><strong>num_classes</strong> (<em>int</em>) – The class number.</li>
<li><strong>param_attr</strong> (<em>paddle.v2.attr.ParameterAttribute|list</em>) – The parameter attributes.</li>
<li><strong>num_neg_samples</strong> (<em>int</em>) – The number of sampled negative labels. The default
value is 10.</li>
<li><strong>neg_distribution</strong> (<em>list | tuple | collections.Sequence | None</em>) – The discrete noisy distribution over the output
space from which num_neg_samples negative labels
are sampled. If this parameter is not set, a
uniform distribution will be used. A user defined
distribution is a list whose length must be equal
to the num_classes. Each member of the list defines
the probability of a class given input x.</li>
<li><strong>bias_attr</strong> (<em>paddle.v2.attr.ParameterAttribute | None | bool | Any</em>) – The attribute for bias. If this parameter is set False or
any object whose type is not paddle.v2.attr.ParameterAttribute, no bias
is added. If this parameter is set True, the bias is
initialized to zero.</li>
<li><strong>layer_attr</strong> (<em>paddle.v2.attr.ExtraAttribute</em>) – Extra Layer Attribute.</li>