search.py 30.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
C
Chengmo 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
18
from ..fluid import core, layers
19

20 21 22 23
# TODO: define searching & indexing functions of a tensor  
from ..fluid.layers import has_inf  #DEFINE_ALIAS
from ..fluid.layers import has_nan  #DEFINE_ALIAS

24 25
__all__ = [
    'argmax',
26 27 28 29
    'argmin',
    'argsort',
    'has_inf',
    'has_nan',
30
    'masked_select',
31
    'topk',
32
    'where',
33 34
    'index_select',
    'nonzero',
C
Chengmo 已提交
35
    'sort',
36
    'index_sample',
37 38 39
]

from paddle.common_ops_import import *
40 41


42 43 44 45 46
def argsort(x, axis=-1, descending=False, name=None):
    """
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort

W
wawltor 已提交
47
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            
71
            paddle.disable_static()
72 73 74 75 76 77
            input_array = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
78
            x = paddle.to_variable(input_array)
79 80 81 82
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
            print(out1.numpy())
W
wawltor 已提交
83 84 85
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
86
            # [[1 3 2 0]
W
wawltor 已提交
87 88
            #  [0 1 2 3]
            #  [2 0 3 1]]]
89
            print(out2.numpy())
W
wawltor 已提交
90 91 92 93 94 95
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
96
            print(out3.numpy())
W
wawltor 已提交
97 98 99 100 101 102
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    """
    if in_dygraph_mode():
        _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


126
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
127 128 129 130 131
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
132
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
133 134
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
135 136 137
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
138 139 140
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
141 142 143
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
144 145

    Returns:
W
wawltor 已提交
146
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
147 148 149 150 151

    Examples:
        .. code-block:: python

            import numpy as np
W
wawltor 已提交
152
            import paddle
153

W
wawltor 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166
            paddle.disable_static()
            data = np.array([[5,8,9,5],
                             [0,0,1,7],
                             [6,9,2,4]])
            x =  paddle.to_variable(data)
            out1 = paddle.argmax(x)
            print(out1.numpy()) # 2
            out2 = paddle.argmax(x, axis=1)
            print(out2.numpy()) 
            # [2 3 1]
            out3 = paddle.argmax(x, axis=-1)
            print(out3.numpy()) 
            # [2 3 1]
167
    """
168 169 170 171 172 173
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
174 175 176 177 178 179
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

    if in_dygraph_mode():
180 181
        out = core.ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
182 183 184 185 186 187
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
188
    attrs = {}
W
wawltor 已提交
189 190 191 192
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
193
    attrs['dtype'] = var_dtype
W
wawltor 已提交
194 195 196 197 198 199
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


200
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
201 202 203 204 205 206 207 208 209 210
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
211
        keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
W
wawltor 已提交
212
        dtype(str): Data type of the output tensor which can
213
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            paddle.disable_static()
            data = np.array([[5,8,9,5],
                             [0,0,1,7],
                             [6,9,2,4]])
            x =  paddle.to_variable(data)
            out1 = paddle.argmin(x)
            print(out1.numpy()) # 4
            out2 = paddle.argmin(x, axis=1)
            print(out2.numpy()) 
            # [0 0 2]
            out3 = paddle.argmin(x, axis=-1)
            print(out3.numpy()) 
            # [0 0 2]
    """
242 243 244 245 246 247
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
248
    flatten = False
249
    if axis is None:
W
wawltor 已提交
250 251 252 253
        flatten = True
        axis = 0

    if in_dygraph_mode():
254 255
        out = core.ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
256 257 258 259 260 261 262
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
    out = helper.create_variable_for_type_inference(var_dtype)
263
    attrs = {}
W
wawltor 已提交
264
    attrs['keepdims'] = keepdim
265
    attrs['axis'] = axis
W
wawltor 已提交
266
    attrs['flatten'] = flatten
267
    attrs['dtype'] = var_dtype
268
    helper.append_op(
W
wawltor 已提交
269
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
270 271
    out.stop_gradient = True
    return out
272 273


274
def index_select(x, index, axis=0, name=None):
275
    """
276
	:alias_main: paddle.index_select
277
	:alias: paddle.tensor.index_select, paddle.tensor.search.index_select
S
swtkiwi 已提交
278

279 280 281 282
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
283

284
    Args:
285 286 287
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
288 289 290
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
291 292

    Returns:
293
        Tensor: A Tensor with same data type as ``x``.
294 295
    
    Raises:
296 297
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of  float32, float64, int32 and int64.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be int32 or int64.
C
Chengmo 已提交
298

299 300
    Examples:
        .. code-block:: python
301
            
302 303 304
            import paddle
            import numpy as np

305
            paddle.disable_static()  # Now we are in imperative mode
306 307 308 309 310
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                             [5.0, 6.0, 7.0, 8.0],
                             [9.0, 10.0, 11.0, 12.0]])
            data_index = np.array([0, 1, 1]).astype('int32')

W
wangchaochaohu 已提交
311 312
            x = paddle.to_tensor(data)
            index = paddle.to_tensor(data_index)
313 314 315 316 317 318 319 320
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
321
    """
322

323
    if in_dygraph_mode():
324
        return core.ops.index_select(x, index, 'dim', axis)
325

326 327 328
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
329
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
330
                             'paddle.tensor.search.index_select')
331

332
    out = helper.create_variable_for_type_inference(x.dtype)
333 334 335

    helper.append_op(
        type='index_select',
336
        inputs={'X': x,
337 338
                'Index': index},
        outputs={'Out': out},
339
        attrs={'dim': axis})
340 341 342 343 344
    return out


def nonzero(input, as_tuple=False):
    """
345 346
	:alias_main: paddle.nonzero
	:alias: paddle.nonzero,paddle.tensor.nonzero,paddle.tensor.search.nonzero
S
swtkiwi 已提交
347

348 349 350 351 352 353 354
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    Args:
        inputs (Variable): The input tensor variable.
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
        Variable. The data type is int64.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            data1 = np.array([[1.0, 0.0, 0.0],
                              [0.0, 2.0, 0.0],
                              [0.0, 0.0, 3.0]])
            data2 = np.array([0.0, 1.0, 0.0, 3.0])
            data3 = np.array([0.0, 0.0, 0.0])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(data1)
                x2 = fluid.dygraph.to_variable(data2)
                x3 = fluid.dygraph.to_variable(data3)
                out_z1 = paddle.nonzero(x1)
                print(out_z1.numpy())
                #[[0 0]
                # [1 1]
                # [2 2]]
                out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
                for out in out_z1_tuple:
                    print(out.numpy())
                #[[0]
                # [1]
                # [2]]
                #[[0]
                # [1]
                # [2]]
                out_z2 = paddle.nonzero(x2)
                print(out_z2.numpy())
                #[[1]
                # [3]]
                out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
                for out in out_z2_tuple:
                    print(out.numpy())
                #[[1]
                # [3]]
                out_z3 = paddle.nonzero(x3)
                print(out_z3.numpy())
                #[]
                out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
                for out in out_z3_tuple:
                    print(out.numpy())
                #[]                    
    """
    list_out = []
    shape = input.shape
    rank = len(shape)

    if in_dygraph_mode():
        outs = core.ops.where_index(input)
    else:
        outs = layers.where(input)

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
                layers.slice(
                    outs, axes=[rank - 1], starts=[i], ends=[i + 1]))
        return tuple(list_out)


430
def sort(x, axis=-1, descending=False, name=None):
431
    """
432 433
	:alias_main: paddle.sort
	:alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort
S
swtkiwi 已提交
434

W
wawltor 已提交
435
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
436

437
    Args:
438
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
439 440 441 442 443 444 445 446 447 448 449
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
450
        Tensor: sorted tensor(with the same shape and data type as ``x``).
451 452 453 454
    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
455
            
456
            paddle.disable_static()
457
            input_array = np.array([[[5,8,9,5],
458 459 460 461 462
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
463
            x = paddle.to_variable(input_array)
464 465 466
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
W
wawltor 已提交
467 468 469 470 471 472 473 474
            print(out1.numpy())
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
            print(out2.numpy())
475
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
476 477 478 479 480 481
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
            print(out3.numpy())
482
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
483 484 485 486 487
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
488
    """
489
    if in_dygraph_mode():
W
wawltor 已提交
490 491
        out, _ = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return out
492
    helper = LayerHelper("sort", **locals())
493 494
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
495 496 497 498
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
499
        inputs={'X': x},
500 501 502 503
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
504
    return out
C
Chengmo 已提交
505 506


507
def where(condition, x, y, name=None):
508
    """
509 510
	:alias_main: paddle.where
	:alias: paddle.where,paddle.tensor.where,paddle.tensor.search.where
S
swtkiwi 已提交
511

512 513 514
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

    .. math::
C
Chengmo 已提交
515

516 517 518 519 520
      out_i =
      \\begin{cases}
      x_i, \quad  \\text{if}  \\ condition_i \\  is \\ True \\\\
      y_i, \quad  \\text{if}  \\ condition_i \\  is \\ False \\\\
      \\end{cases}
C
Chengmo 已提交
521

522

523
    Args:
524 525 526 527 528 529 530 531
        condition(Variable): The condition to choose x or y.
        x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64.
        y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64.

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

532
    Returns:
533 534
        Variable: A Tensor with the same data dype as x. 

535 536 537
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
538
          import paddle
539 540
          import numpy as np
          import paddle.fluid as fluid
541 542 543

          x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
          y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
544 545 546 547 548

          with fluid.dygraph.guard():
              x = fluid.dygraph.to_variable(x_i)
              y = fluid.dygraph.to_variable(y_i)
              out = paddle.where(x>1, x, y)
549 550 551

          print(out.numpy())
          #out: [1.0, 1.0, 3.2, 1.2]
552 553
    """
    if not in_dygraph_mode():
554
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
555
        check_variable_and_dtype(
556
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
557
        check_variable_and_dtype(
558
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
559

560 561 562
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if x_shape == y_shape:
563
        if in_dygraph_mode():
564
            return core.ops.where(condition, x, y)
565 566
        else:
            helper = LayerHelper("where", **locals())
G
GaoWei8 已提交
567
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
568 569 570

            helper.append_op(
                type='where',
571 572 573
                inputs={'Condition': condition,
                        'X': x,
                        'Y': y},
574 575 576
                outputs={'Out': [out]})
            return out
    else:
577 578 579 580
        cond_int = layers.cast(condition, x.dtype)
        cond_not_int = layers.cast(layers.logical_not(condition), x.dtype)
        out1 = layers.elementwise_mul(x, cond_int)
        out2 = layers.elementwise_mul(y, cond_not_int)
581 582 583 584
        out = layers.elementwise_add(out1, out2)
        return out


C
Chengmo 已提交
585 586
def index_sample(x, index):
    """
587 588
	:alias_main: paddle.index_sample
	:alias: paddle.index_sample,paddle.tensor.index_sample,paddle.tensor.search.index_sample
S
swtkiwi 已提交
589

C
Chengmo 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
        x (Variable): The source input tensor with 2-D shape. Supported data type is 
            int32, int64, float32, float64.
        index (Variable): The index input tensor with 2-D shape, first dimension should be same with X. 
            Data type is int32 or int64.

    Returns:
        output (Variable): The output is a tensor with the same shape as index.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

C
Chengmo 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [9.0, 10.0, 11.0, 12.0]]).astype('float32')

            data_index = np.array([[0, 1, 2],
                                    [1, 2, 3],
                                    [0, 0, 0]]).astype('int32')

            target_data = np.array([[100, 200, 300, 400],
                                    [500, 600, 700, 800],
                                    [900, 1000, 1100, 1200]]).astype('int32')

            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(data)
                index = fluid.dygraph.to_variable(data_index)
                target = fluid.dygraph.to_variable(target_data)

                out_z1 = paddle.index_sample(x, index)
                print(out_z1.numpy())
                #[[1. 2. 3.]
                # [6. 7. 8.]
                # [9. 9. 9.]]

                # Use the index of the maximum value by topk op
                # get the value of the element of the corresponding index in other tensors
                top_value, top_index = fluid.layers.topk(x, k=2)
                out_z2 = paddle.index_sample(target, top_index)
                print(top_value.numpy())
                #[[ 4.  3.]
                # [ 8.  7.]
                # [12. 11.]]

                print(top_index.numpy())
                #[[3 2]
                # [3 2]
                # [3 2]]

                print(out_z2.numpy())
                #[[ 400  300]
                # [ 800  700]
                # [1200 1100]]

C
Chengmo 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

    """
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Raises:
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of  float32, float64, int32 and int64.
        TypeError: ``mask`` must be a Tensor and the data type of ``mask`` must be bool.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np
            
            paddle.disable_static()
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [9.0, 10.0, 11.0, 12.0]]).astype('float32')
            
            mask_data = np.array([[True, False, False, False],
                            [True, True, False, False],
                            [True, False, False, False]]).astype('bool')
            x = paddle.to_tensor(data)
            mask = paddle.to_tensor(mask_data)
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

    if in_dygraph_mode():
        return core.ops.masked_select(x, mask)

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import numpy as np
           import paddle

           paddle.disable_static()

           data_1 = np.array([1, 4, 5, 7])
           tensor_1 = paddle.to_tensor(data_1)
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
           print(value_1.numpy())
           # [7]
           print(indices_1.numpy())
           # [3] 
           data_2 = np.array([[1, 4, 5, 7], [2, 6, 2, 5]])
           tensor_2 = paddle.to_tensor(data_2)
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
           print(value_2.numpy())
           # [[7]
           #  [6]]
           print(indices_2.numpy())
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
           print(value_3.numpy())
           # [[7]
           #  [6]]
           print(indices_3.numpy())
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
           print(value_4.numpy())
           # [[2 6 5 7]]
           print(indices_4.numpy())
           # [[1 1 0 0]]

    """
    if in_dygraph_mode():
        k = k.numpy().item(0) if isinstance(k, Variable) else k
        if axis is None:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'largest', largest,
                                             'sorted', sorted)
        else:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'axis', axis, 'largest',
                                             largest, 'sorted', sorted)
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices