auto_parallel_amp.py 37.4 KB
Newer Older
J
JZ-LIANG 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
J
JZ-LIANG 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
J
JZ-LIANG 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
J
JZ-LIANG 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.framework import core
from paddle.fluid import unique_name
from .pass_base import PassBase, register_pass
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type
from paddle.distributed.auto_parallel.utils import get_loss_op, set_var_dist_attr
from paddle.distributed.auto_parallel.utils import naive_set_dist_op_attr_for_program_by_mesh_and_mapping
from paddle.distributed.auto_parallel.process_group import get_world_process_group
from paddle.fluid.contrib.mixed_precision.fp16_utils import AutoMixedPrecisionLists
from paddle.fluid.contrib.mixed_precision.fp16_utils import _keep_fp32_input, _keep_fp32_output, find_op_index
from paddle.fluid.contrib.mixed_precision.fp16_utils import _valid_types, find_true_post_op, find_true_prev_op
from paddle.fluid.contrib.mixed_precision.fp16_utils import _is_in_black_varnames, _dtype_to_str, _rename_arg
from paddle.distributed.auto_parallel.dist_attribute import OperatorDistributedAttribute
29
from ..auto_parallel.utils import is_forward_op, is_backward_op, is_loss_op
30

Z
zhaoyingli 已提交
31
world_process_group = get_world_process_group()
J
JZ-LIANG 已提交
32 33 34


class AMPState(object):
35

J
JZ-LIANG 已提交
36 37 38 39 40
    def __init__(self, block):
        self._block = block
        self._op_fp16_dict = {
        }  # op_id --> True/False. 'True' means that the current op is in fp16 mode.
        self._var_name_dict = {}  # fwd_op_id --> {old_name: cast_name}
Z
zhaoyingli 已提交
41
        self.is_train = False
J
JZ-LIANG 已提交
42 43 44 45

    def _is_fp16_op(self, op_id):
        return self._op_fp16_dict.get(op_id, None)

Z
zhaoyingli 已提交
46
    def _build_state(self, amp_lists, dist_context):
J
JZ-LIANG 已提交
47 48 49
        ops = self._block.ops
        dist_op_context = dist_context.dist_op_context
        for op in ops:
Z
zhaoyingli 已提交
50 51 52
            if int(op.attr('op_role')) == 257:
                self.is_train = True

J
JZ-LIANG 已提交
53 54 55
            if int(op.attr('op_role')) == int(OpRole.Forward):
                self._mark_black_white_ops(amp_lists)
            elif int(op.attr('op_role')) == int(OpRole.Backward):
56 57 58
                if op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
                    fwd_op_id = dist_op_context.grad_op_id_to_op_id[
                        op.desc.original_id()]
J
JZ-LIANG 已提交
59
                    if self._is_fp16_op(fwd_op_id) == True:
60
                        self._op_fp16_dict[op.desc.original_id()] = True
J
JZ-LIANG 已提交
61
                    elif self._is_fp16_op(fwd_op_id) == False:
62
                        self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
63 64 65
            elif int(op.attr('op_role')) == int(OpRole.Optimize):
                break

Z
zhaoyingli 已提交
66 67
        return self.is_train

J
JZ-LIANG 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81
    def _mark_black_white_ops(self, amp_lists):
        """
        this function is modified from paddle.fluid.contrib.mixed_precision
        """
        self._block._sync_with_cpp()
        ops = self._block.ops

        for op in ops:
            if int(op.attr('op_role')) == int(OpRole.Backward):
                break
            if op.type == 'create_py_reader' or op.type == 'read':
                continue
            if amp_lists.black_varnames is not None and _is_in_black_varnames(
                    op, amp_lists):
82
                self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
83 84
                continue
            if op.type in amp_lists.black_list:
85
                self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
86
            elif op.type in amp_lists.white_list:
87
                self._op_fp16_dict[op.desc.original_id()] = True
J
JZ-LIANG 已提交
88 89 90 91 92 93 94 95 96 97 98 99
            elif op.type in amp_lists.gray_list:
                is_black_op = False
                is_white_op = False
                for in_name in op.input_names:
                    # if this op has inputs
                    if in_name:
                        for in_var_name in op.input(in_name):
                            in_var = self._block.var(in_var_name)
                            # this in_var isn't the output of other op
                            if in_var.op is None:
                                continue
                            elif in_var.op is op:
100 101
                                prev_op = find_true_prev_op(
                                    ops, op, in_var_name)
J
JZ-LIANG 已提交
102 103 104 105 106
                                if prev_op is None:
                                    continue
                            else:
                                prev_op = in_var.op
                            # if it's one of inputs
107
                            if self._is_fp16_op(prev_op.desc.original_id()) == False or \
J
JZ-LIANG 已提交
108 109
                                    prev_op.type in amp_lists.black_list:
                                is_black_op = True
110
                            elif self._is_fp16_op(prev_op.desc.original_id()) == True or \
J
JZ-LIANG 已提交
111 112 113
                                    prev_op.type in amp_lists.white_list:
                                is_white_op = True
                if is_black_op:
114
                    self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
115
                elif is_white_op:
116
                    self._op_fp16_dict[op.desc.original_id()] = True
J
JZ-LIANG 已提交
117 118 119 120 121
                else:
                    pass
            else:
                # For numerical safe, we apply fp32 computation on ops that
                # are not determined which list they should stay.
122
                self._op_fp16_dict[op.desc.original_id()] = False
J
JZ-LIANG 已提交
123 124 125 126 127 128 129 130 131

    def cast_forward_program(self, dist_context):
        ops = self._block.ops
        idx = 0
        while idx < len(ops):
            op = ops[idx]
            num_cast_ops = 0
            if int(op.attr('op_role')) == int(OpRole.Backward):
                break
132
            if self._is_fp16_op(op.desc.original_id()) == False:
J
JZ-LIANG 已提交
133 134 135
                num_cast_ops = self._insert_cast_op_forward(
                    op, idx, core.VarDesc.VarType.FP16,
                    core.VarDesc.VarType.FP32, dist_context)
136
            elif self._is_fp16_op(op.desc.original_id()) == True:
J
JZ-LIANG 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                num_cast_ops = self._insert_cast_op_forward(
                    op, idx, core.VarDesc.VarType.FP32,
                    core.VarDesc.VarType.FP16, dist_context)
            else:
                pass
            idx += num_cast_ops + 1
        self._block._sync_with_cpp()

    def _insert_cast_op_forward(self, op, idx, src_dtype, dst_dtype,
                                dist_context):
        """
        only for forward cast
        modified from paddle.fluid.contrib.mixed_precision
        """
        num_cast_ops = 0
152
        var_name_dict = {}
J
JZ-LIANG 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        for in_name in op.input_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
                    op, in_name):
                continue
            for in_var_name in op.input(in_name):
                in_var = self._block._find_var_recursive(in_var_name)
                if in_var.type not in _valid_types or in_var.dtype == dst_dtype:
                    continue
                if in_var.dtype == src_dtype:
                    cast_name = in_var.name + '.cast_' + _dtype_to_str(
                        dst_dtype)
                    out_var = self._block.vars.get(cast_name)
                    var_name_dict[in_var.name] = cast_name
                    consume_op_attr = dist_context.get_op_dist_attr_for_program(
                        op)
                    assert consume_op_attr is not None
                    if out_var is None or out_var.dtype != dst_dtype:
                        # NOTE we make the cast op and var's dist attr as the op that consume the
                        # cast var instead of the op which generates the var
                        in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                            in_var.name)
                        assert in_var_dist_attr is not None
                        ref_mesh = in_var_dist_attr.process_mesh
                        ref_mapping = in_var_dist_attr.dims_mapping
177 178
                        consume_op_attr.set_input_dist_attr(
                            cast_name, in_var_dist_attr)
J
JZ-LIANG 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

                        out_var = self._block.create_var(
                            name=cast_name,
                            dtype=dst_dtype,
                            persistable=False,
                            stop_gradient=in_var.stop_gradient)
                        set_var_dist_attr(dist_context, out_var, ref_mapping,
                                          ref_mesh)

                        cast_op = self._block._insert_op_without_sync(
                            idx,
                            type="cast",
                            inputs={"X": in_var},
                            outputs={"Out": out_var},
                            attrs={
                                "in_dtype": in_var.dtype,
                                "out_dtype": out_var.dtype,
                            })
                        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                            cast_op, ref_mesh, ref_mapping, dist_context)
                        num_cast_ops += 1
                    else:
                        in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                            in_var.name)
203 204
                        consume_op_attr.set_input_dist_attr(
                            cast_name, in_var_dist_attr)
J
JZ-LIANG 已提交
205 206 207 208
                    _rename_arg(op, in_var.name, cast_name)
                else:
                    if op.has_attr('in_dtype'):
                        op._set_attr('in_dtype', dst_dtype)
209
        self._var_name_dict[op.desc.original_id()] = var_name_dict
J
JZ-LIANG 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

        if src_dtype == core.VarDesc.VarType.FP32 and dst_dtype == core.VarDesc.VarType.FP16:
            for out_name in op.output_names:
                if _keep_fp32_output(op, out_name):
                    continue
                for out_var_name in op.output(out_name):
                    out_var = self._block.var(out_var_name)
                    if out_var.type not in _valid_types:
                        continue
                    if out_var.dtype == core.VarDesc.VarType.FP32:
                        out_var.desc.set_dtype(core.VarDesc.VarType.FP16)
                        if op.has_attr('out_dtype'):
                            op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
        return num_cast_ops

    def cast_backward_program(self, params_grads, dist_context):
        self._block._sync_with_cpp()
        ops = self._block.ops

        loss_op = get_loss_op(self._block)
        loss_op_index = find_op_index(self._block.desc, loss_op.desc)

232
        appended_grad_times = 0
J
JZ-LIANG 已提交
233 234 235 236
        idx = loss_op_index + 1
        while idx < len(ops):
            num_cast_ops = 0
            grad_op = ops[idx]
237 238 239 240 241 242 243 244 245

            # NOTE: the map in `grad_var_to_var` may be changed when the var is casted,
            # which will affect the dist_op to insert allreduce_sum op.
            op_dist_attr = dist_context.get_op_dist_attr_for_program(grad_op)
            if is_backward_op(grad_op) and (is_forward_op(ops[idx - 1])
                                            or is_loss_op(ops[idx - 1])):
                if not op_dist_attr.is_recompute:
                    appended_grad_times += 1

246
            grad_op_orig_id = grad_op.desc.original_id()
J
JZ-LIANG 已提交
247
            dist_op_context = dist_context.dist_op_context
248 249
            if grad_op_orig_id in dist_op_context.grad_op_id_to_op_id:
                if self._is_fp16_op(grad_op_orig_id) == False:  # fp32
J
JZ-LIANG 已提交
250 251
                    num_cast_ops = self._insert_cast_op_backward(
                        grad_op, idx, core.VarDesc.VarType.FP16,
252 253
                        core.VarDesc.VarType.FP32, dist_context,
                        appended_grad_times)
254
                elif self._is_fp16_op(grad_op_orig_id) == True:  # fp16
J
JZ-LIANG 已提交
255 256
                    num_cast_ops = self._insert_cast_op_backward(
                        grad_op, idx, core.VarDesc.VarType.FP32,
257 258
                        core.VarDesc.VarType.FP16, dist_context,
                        appended_grad_times)
J
JZ-LIANG 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            elif grad_op.type == "sum":
                in_var_name = grad_op.desc.input_arg_names()[0]
                src_dtype = self._block.var(in_var_name).dtype
                for in_var_name in grad_op.desc.input_arg_names():
                    assert src_dtype == self._block.var(in_var_name).dtype
                out_var_name = grad_op.desc.output_arg_names()[0]
                out_var = self._block.var(out_var_name)
                if out_var.dtype != src_dtype:
                    out_var.desc.set_dtype(src_dtype)
            elif int(grad_op.attr('op_role')) == 257:
                pass
            else:
                raise ValueError(
                    "'{}' op is not supported in the complete amp pass.".format(
                        grad_op.type))
            idx += num_cast_ops + 1

        self._block._sync_with_cpp()
        _update_backward_cast_ops(params_grads, dist_context)

    def _insert_cast_op_backward(self, grad_op, idx, src_dtype, dst_dtype,
280
                                 dist_context, appended_grad_times):
J
JZ-LIANG 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        """ only for backward cast """

        def _keep_fp32_input(op, in_name):
            op_type = op.type
            if op_type in ['layer_norm_grad']:
                return in_name not in {'X', 'Y@GRAD'}
            return False

        def _keep_fp32_output(op, out_name):
            op_type = op.type
            if op_type in ['layer_norm_grad']:
                return out_name != 'X@GRAD'
            return False

        num_cast_ops = 0
296
        original_id = grad_op.desc.original_id()
J
JZ-LIANG 已提交
297
        dist_op_context = dist_context.dist_op_context
298
        fwd_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
J
JZ-LIANG 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

        for in_name in grad_op.input_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
                    grad_op, in_name):
                for in_var_name in grad_op.input(in_name):
                    in_var = self._block._find_var_recursive(in_var_name)
                    assert in_var.dtype == core.VarDesc.VarType.FP32
                continue

            for in_var_name in grad_op.input(in_name):
                in_var = self._block._find_var_recursive(in_var_name)
                if in_var.dtype == src_dtype:
                    consume_op_attr = dist_context.get_op_dist_attr_for_program(
                        grad_op)
                    if in_var_name in self._var_name_dict[fwd_op_id]:
                        # NOTE: if in_var of consume grad_op has been casted before,
                        # it should be renamed and reset dist_attr.
                        cast_name = self._var_name_dict[fwd_op_id][in_var_name]
                        grad_op.desc._rename_input(in_var_name, cast_name)
                        in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                            in_var_name)
320 321
                        consume_op_attr.set_input_dist_attr(
                            cast_name, in_var_dist_attr)
J
JZ-LIANG 已提交
322
                    else:
323 324 325
                        assert in_var.dtype == dst_dtype, "op [{}] expect input [{}] to be dtype [{}] BUT got [{}]. {}".format(
                            grad_op.type, in_name, dst_dtype, in_var.dtype,
                            str(grad_op))
J
JZ-LIANG 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

        for out_name in grad_op.output_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_output(
                    grad_op, out_name):
                for out_var_name in grad_op.output(out_name):
                    out_var = self._block._find_var_recursive(out_var_name)
                    assert out_var.dtype == core.VarDesc.VarType.FP32
                continue

            for out_var_name in grad_op.output(out_name):
                out_var = self._block._find_var_recursive(out_var_name)
                out_var_name_prefix = out_var_name[:out_var_name.find("@")]
                fwd_var = self._block._find_var_recursive(out_var_name_prefix)
                # NOTE: the out_var's dtype of consume grad_op should equal to the fwd_var's dtype
                if out_var.dtype != fwd_var.dtype:
                    out_var.desc.set_dtype(fwd_var.dtype)

                if out_var.dtype == src_dtype:
                    if out_var_name_prefix in self._var_name_dict[fwd_op_id]:
                        # NOTE: if out_var of consume grad_op has been casted before,
                        # it should be renamed and reset dist_attr, then we insert cast op to
                        # convert the cast_var to original dtype
                        consume_op_attr = dist_context.get_op_dist_attr_for_program(
                            grad_op)
                        fwd_cast_name = self._var_name_dict[fwd_op_id][
                            out_var_name_prefix]
352 353 354 355
                        suffix = ""
                        if "@RENAME" in out_var_name:
                            suffix = out_var_name[out_var_name.find("@RENAME"):]
                        cast_name = fwd_cast_name + "@GRAD" + suffix
J
JZ-LIANG 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                        cast_var = self._block.vars.get(cast_name)
                        if cast_var is None or cast_var.dtype != dst_dtype:
                            grad_op.desc._rename_output(out_var_name, cast_name)
                            out_var_dist_attr = consume_op_attr.get_output_dist_attr(
                                out_var_name)
                            ref_mesh = out_var_dist_attr.process_mesh
                            ref_mapping = out_var_dist_attr.dims_mapping
                            consume_op_attr.set_output_dist_attr(
                                cast_name, out_var_dist_attr)
                            assert ref_mapping is not None
                            cast_var = self._block.create_var(
                                name=cast_name,
                                shape=out_var.shape,
                                dtype=dst_dtype,
                                persistable=False,
                                stop_gradient=out_var.stop_gradient)
                            set_var_dist_attr(dist_context, cast_var,
                                              ref_mapping, ref_mesh)
374 375
                            dist_op_context.grad_var_to_var[
                                appended_grad_times][cast_name] = fwd_cast_name
J
JZ-LIANG 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

                            cast_op = self._block._insert_op(
                                idx + 1,
                                type="cast",
                                inputs={"X": cast_var},
                                outputs={"Out": out_var},
                                attrs={
                                    "in_dtype": cast_var.dtype,
                                    "out_dtype": out_var.dtype,
                                    "op_role": OpRole.Backward
                                })
                            cast_op._remove_attr("op_role_var")
                            cast_op._remove_attr("op_namescope")
                            cast_op._remove_attr("with_quant_attr")
                            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                                cast_op, ref_mesh, ref_mapping, dist_context)
                            num_cast_ops += 1
                else:
                    assert out_var.dtype == dst_dtype

        return num_cast_ops


def _update_backward_cast_ops(params_grads, dist_context):
    """
    move param grad cast to the end of backward segment
    in order to enabel fp16 allreduce
    """
    # TODO filter optimize ops in future

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    for p, g in params_grads:
        op = g.op
        if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast':
412 413
            if int(op.attr('op_role')) == int(
                    OpRole.Backward) and op.has_attr('op_role_var'):
J
JZ-LIANG 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427
                op._remove_attr("op_role_var")

            post_ops = find_true_post_op(main_block.ops, op, g.name)
            if post_ops:
                raise ValueError("The cast op {0}'s output should not be"
                                 "used by a non-optimize op, however, it"
                                 "is used by {1}".format(op, post_ops[0]))

            if op == main_block.ops[-1]:
                continue

            # add new op in the python and cpp at the same time
            new_op_desc = main_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
428 429 430 431 432 433
            new_op = paddle.fluid.framework.Operator(block=main_block,
                                                     desc=new_op_desc,
                                                     type=None,
                                                     inputs=None,
                                                     outputs=None,
                                                     attrs=None)
J
JZ-LIANG 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
            main_block.ops.append(new_op)

            # dist attr
            param_dist_attr = dist_context.get_tensor_dist_attr_for_program(p)
            output_dist_attr = dist_context.get_tensor_dist_attr_for_program(
                main_block.var(op.output_arg_names[0]))
            assert param_dist_attr is not None
            assert output_dist_attr is not None
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                new_op, param_dist_attr.process_mesh,
                param_dist_attr.dims_mapping, dist_context)

            output_dist_attr.process_mesh = param_dist_attr.process_mesh
            output_dist_attr.dims_mapping = param_dist_attr.dims_mapping

            op_idx = find_op_index(main_block.desc, op.desc)
            if op_idx == -1:
                raise ValueError("The op {0} is not in program".format(op))
            main_block._remove_op(op_idx, sync=False)

    main_block._sync_with_cpp()


def _check_and_update_gradient(params_grads, loss_scaling, dist_context):

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    grads = [g for _, g in params_grads]
    check_type(grads, 'x', (tuple, list), 'check_finite_and_unscale')
    for e in grads:
        check_variable_and_dtype(e, "x", ['float16', 'float32', 'float64'],
                                 'check_finite_and_unscale')

    found_inf = main_block.create_var(
        name=unique_name.generate_with_ignorable_key(".".join(
            ['find_infinite_scale', 'tmp'])),
        shape=[1],
        dtype='bool',
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=False)
Z
zhaoyingli 已提交
476
    set_var_dist_attr(dist_context, found_inf, [-1], world_process_group.ranks)
J
JZ-LIANG 已提交
477 478 479

    inputs = {'X': grads, 'Scale': loss_scaling}
    outputs = {'Out': grads, 'FoundInfinite': found_inf}
480
    attrs = {'op_role': OpRole.Optimize}
481 482 483 484
    new_op = main_block.append_op(type='check_finite_and_unscale',
                                  inputs=inputs,
                                  outputs=outputs,
                                  attrs=attrs)
J
JZ-LIANG 已提交
485 486

    new_op_dist_attr = OperatorDistributedAttribute()
Z
zhaoyingli 已提交
487 488 489 490
    new_op_dist_attr.process_mesh = world_process_group.ranks
    new_op_dist_attr.impl_idx = 0
    if len(world_process_group.ranks) > 1:
        new_op_dist_attr.impl_type = "check_finite_and_unscale"
J
JZ-LIANG 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503
    for g in grads:
        g_dist_attr = dist_context.get_tensor_dist_attr_for_program(g)
        assert g_dist_attr is not None
        new_op_dist_attr.set_input_dims_mapping(g.name,
                                                g_dist_attr.dims_mapping)
        new_op_dist_attr.set_output_dims_mapping(g.name,
                                                 g_dist_attr.dims_mapping)
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)
    return grads, found_inf


@register_pass("auto_parallel_amp")
class AMPPass(PassBase):
504

J
JZ-LIANG 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517
    def __init__(self):
        super(AMPPass, self).__init__()
        self.set_attr("loss", None)
        self.set_attr("dist_context", None)
        self.set_attr("custom_white_list", None)
        self.set_attr("custom_black_list", None)
        self.set_attr("custom_black_varnames", None)
        self.set_attr("init_loss_scaling", 32768.0)
        self.set_attr("incr_every_n_steps", 1000)
        self.set_attr("decr_every_n_nan_or_inf", 2)
        self.set_attr("incr_ratio", 2.0)
        self.set_attr("decr_ratio", 0.8)
        self.set_attr("use_dynamic_loss_scaling", False)
518
        self.set_attr("input_data", [])
J
JZ-LIANG 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
        self.set_attr("params_grads", [])
        self._loss_scaling = None
        self._num_good_steps = None
        self._num_bad_steps = None

    def _check_self(self):
        if self.get_attr("init_loss_scaling") < 0:
            return False
        if self.get_attr("incr_every_n_steps") < 0:
            return False
        if self.get_attr("decr_every_n_nan_or_inf") < 0:
            return False
        if self.get_attr("incr_ratio") < 0:
            return False
        if self.get_attr("decr_ratio") < 0:
            return False
        if self.get_attr("dist_context") is None:
            return False
        return True

    def _check_conflict(self, other_pass):

        return True

543 544
    # NOTE: why AMPBackwardPass can override apply_single_impl instead of
    # apply_impl? AMP is an optimization pass for serial program,
J
JZ-LIANG 已提交
545 546 547 548 549 550 551 552 553 554 555
    # in distributed scenario, all ranks should have the same modification.
    def _apply_single_impl(self, main_program, startup_program, context):
        self.dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")

        amp_lists = AutoMixedPrecisionLists(
            set(self.get_attr("custom_white_list")),
            set(self.get_attr("custom_black_list")),
            set(self.get_attr("custom_black_varnames")))

        with paddle.static.program_guard(main_program, startup_program):
Z
zhaoyingli 已提交
556 557 558
            amp_state = AMPState(main_program.global_block())
            is_train = amp_state._build_state(amp_lists, self.dist_context)

J
JZ-LIANG 已提交
559
            amp_state.cast_forward_program(self.dist_context)
Z
zhaoyingli 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573

        if is_train:
            with paddle.static.program_guard(main_program, startup_program):
                amp_state.cast_backward_program(params_grads, self.dist_context)
                self._init_amp_var()
                self._scale_loss()

                if self.get_attr("use_dynamic_loss_scaling"
                                 ) or self.get_attr("init_loss_scaling") != 1.0:
                    grads, found_inf = _check_and_update_gradient(
                        params_grads, self._loss_scaling, self.dist_context)

                if self.get_attr("use_dynamic_loss_scaling"):
                    self._update_loss_scaling(grads, found_inf)
J
JZ-LIANG 已提交
574 575 576 577 578 579 580 581 582

    def _init_amp_var(self):
        self._loss_scaling = paddle.static.create_global_var(
            name=unique_name.generate("loss_scaling"),
            shape=[1],
            value=self.get_attr("init_loss_scaling"),
            dtype='float32',
            persistable=True)
        set_var_dist_attr(self.dist_context, self._loss_scaling, [-1],
Z
zhaoyingli 已提交
583
                          world_process_group.ranks)
J
JZ-LIANG 已提交
584 585 586 587 588 589 590 591 592

        if self.get_attr("use_dynamic_loss_scaling"):
            self._num_good_steps = paddle.static.create_global_var(
                name=unique_name.generate("num_good_steps"),
                shape=[1],
                value=0,
                dtype='int32',
                persistable=True)
            set_var_dist_attr(self.dist_context, self._num_good_steps, [-1],
Z
zhaoyingli 已提交
593
                              world_process_group.ranks)
J
JZ-LIANG 已提交
594 595 596 597 598 599 600 601

            self._num_bad_steps = paddle.static.create_global_var(
                name=unique_name.generate("num_bad_steps"),
                shape=[1],
                value=0,
                dtype='int32',
                persistable=True)
            set_var_dist_attr(self.dist_context, self._num_bad_steps, [-1],
Z
zhaoyingli 已提交
602
                              world_process_group.ranks)
J
JZ-LIANG 已提交
603 604 605 606 607

    def _scale_loss(self):

        main_block = paddle.static.default_main_program().global_block()
        main_block._sync_with_cpp()
608 609
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()

J
JZ-LIANG 已提交
610 611 612 613 614 615 616
        loss = self.get_attr("loss")
        assert loss is not None
        loss_op = loss.op
        loss_op_dist_attr = self.dist_context.get_op_dist_attr_for_program(
            loss_op)

        if loss.dtype != core.VarDesc.VarType.FP32:
617 618

            tmp_name = unique_name.generate(loss.name + ".cast_fp32")
619 620
            cast_loss = main_block.create_var(name=tmp_name,
                                              dtype=core.VarDesc.VarType.FP32)
621 622 623
            loss_dist_attr = self.dist_context.get_tensor_dist_attr_for_program(
                loss)
            ref_mesh = loss_op_dist_attr.process_mesh
624 625
            self.dist_context.set_tensor_dist_attr_for_program(
                cast_loss, loss_dist_attr)
626

627
            # forward
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
            loss_op_idx = find_op_index(main_block.desc, loss_op.desc)
            cast_op = main_block._insert_op(
                loss_op_idx + 1,
                type='cast',
                inputs={'X': [loss]},
                outputs={'Out': [cast_loss]},
                attrs={
                    "in_dtype": loss.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                    'op_role': loss_op.all_attrs()[OP_ROLE_KEY],
                })

            loss_op._set_attr(OP_ROLE_KEY,
                              core.op_proto_and_checker_maker.OpRole.Forward)
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                cast_op, ref_mesh, [-1], self.dist_context)
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

            # backward
            first_backward_op = main_block.ops[loss_op_idx + 2]
            assert first_backward_op.type == "fill_constant" and int(
                first_backward_op.all_attrs()[OP_ROLE_KEY]) == 257
            cast_loss_grad = main_block.create_var(
                name=unique_name.generate(tmp_name + "@GRAD"),
                shape=loss.shape,
                dtype=core.VarDesc.VarType.FP32,
                persistable=loss.persistable)
            set_var_dist_attr(self.dist_context, cast_loss_grad, [-1], ref_mesh)

            pre_grad_name = first_backward_op.output_arg_names[0]
            first_backward_op._rename_output(pre_grad_name, cast_loss_grad.name)
            cast_grad_op = main_block._insert_op(
                loss_op_idx + 3,
                type='cast',
                inputs={'X': [cast_loss_grad]},
                outputs={'Out': [pre_grad_name]},
                attrs={
                    "in_dtype": core.VarDesc.VarType.FP32,
                    "out_dtype": core.VarDesc.VarType.FP16,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Backward,
                })
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                cast_grad_op, ref_mesh, [-1], self.dist_context)
            loss_op = cast_op
            loss = cast_loss
J
JZ-LIANG 已提交
672

673 674
        if self.get_attr("use_dynamic_loss_scaling"
                         ) or self.get_attr("init_loss_scaling") != 1.0:
J
JZ-LIANG 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

            loss_op_idx = find_op_index(main_block.desc, loss_op.desc)

            # forward
            ref_mesh = loss_op_dist_attr.process_mesh
            self._scaled_loss = main_block.create_var(
                name=unique_name.generate("scaled_loss"),
                shape=loss.shape,
                dtype=loss.dtype,
                persistable=loss.persistable)
            set_var_dist_attr(self.dist_context, self._scaled_loss, [-1],
                              ref_mesh)

            elementwise_mul_op = main_block._insert_op(
                loss_op_idx + 1,
                type='elementwise_mul',
691 692 693 694
                inputs={
                    'X': [loss],
                    'Y': [self._loss_scaling]
                },
J
JZ-LIANG 已提交
695
                outputs={'Out': [self._scaled_loss]},
696 697 698
                attrs={
                    'op_role': loss_op.all_attrs()[OP_ROLE_KEY],
                })
J
JZ-LIANG 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
            loss_op._set_attr(OP_ROLE_KEY,
                              core.op_proto_and_checker_maker.OpRole.Forward)
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                elementwise_mul_op, ref_mesh, [-1], self.dist_context)

            # backward
            first_backward_op = main_block.ops[loss_op_idx + 2]
            assert first_backward_op.type == "fill_constant" and int(
                first_backward_op.all_attrs()[OP_ROLE_KEY]) == 257
            self._scaled_loss_grad = main_block.create_var(
                name=unique_name.generate("scaled_loss") + "@GRAD",
                shape=loss.shape,
                dtype=loss.dtype,
                persistable=loss.persistable)
            set_var_dist_attr(self.dist_context, self._scaled_loss_grad, [-1],
                              ref_mesh)
            pre_grad_name = first_backward_op.output_arg_names[0]
            first_backward_op._rename_output(pre_grad_name,
                                             self._scaled_loss_grad.name)
            # FIXME(JZ-LIANG) a trick to insert backward op
            main_block._sync_with_cpp()
            elementwise_mul_grad_op_desc = main_block.desc._insert_op(
                loss_op_idx + 3)
            elementwise_mul_grad_op_desc.set_type("elementwise_mul_grad")
            elementwise_mul_grad_op_desc.set_input(
                'Out@GRAD', [self._scaled_loss_grad.name])
            elementwise_mul_grad_op_desc.set_input('X', [loss.name])
            elementwise_mul_grad_op_desc.set_input('Y',
                                                   [self._loss_scaling.name])
            elementwise_mul_grad_op_desc.set_output('X@GRAD', [pre_grad_name])
            elementwise_mul_grad_op_desc.set_output('Y@GRAD', [])
            elementwise_mul_grad_op_desc._set_attr(
                OP_ROLE_KEY, core.op_proto_and_checker_maker.OpRole.Backward)
            elementwise_mul_grad_op_desc._set_attr('axis', -1)
            elementwise_mul_grad_op = paddle.fluid.framework.Operator(
                main_block, elementwise_mul_grad_op_desc)
            main_block.ops.insert(loss_op_idx + 3, elementwise_mul_grad_op)
            main_block._sync_with_cpp()
            elementwise_mul_grad_op = main_block.ops[loss_op_idx + 3]
            assert elementwise_mul_grad_op.type == "elementwise_mul_grad"
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                elementwise_mul_grad_op, ref_mesh, [-1], self.dist_context)

        else:
            self._scaled_loss = loss
744
        self._loss = loss
J
JZ-LIANG 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757
        main_block._sync_with_cpp()

    def _update_loss_scaling(self, grads, found_inf):

        main_block = paddle.static.default_main_program().global_block()
        main_block._sync_with_cpp()

        check_variable_and_dtype(self._loss_scaling, "prev_loss_scaling",
                                 ['float32', 'float64'], "update_loss_scaling")
        check_type(grads, 'x', (tuple, list), 'update_loss_scaling')
        for e in grads:
            check_variable_and_dtype(e, "x", ['float16', 'float32', 'float64'],
                                     'update_loss_scaling')
758 759 760 761 762
            if e.dtype == core.VarDesc.VarType.FP16:
                assert self._loss_scaling.dtype == core.VarDesc.VarType.FP32, \
                    "The dtype of prev_loss_scaling should be float32 when the dtype of x is float16."
            else:
                assert self._loss_scaling.dtype == e.dtype, "The dtype of prev_loss_scaling should be equal to the dtype of x."
J
JZ-LIANG 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

        inputs = {
            'X': grads,
            'FoundInfinite': found_inf,
            'PrevLossScaling': self._loss_scaling,
            'InGoodSteps': self._num_good_steps,
            'InBadSteps': self._num_bad_steps
        }

        outputs = {
            'Out': grads,
            'LossScaling': self._loss_scaling,
            'OutGoodSteps': self._num_good_steps,
            'OutBadSteps': self._num_bad_steps
        }

        attrs = {
            'incr_every_n_steps': self.get_attr("incr_every_n_steps"),
            'decr_every_n_nan_or_inf': self.get_attr("decr_every_n_nan_or_inf"),
            'incr_ratio': self.get_attr("incr_ratio"),
            'decr_ratio': self.get_attr("decr_ratio"),
            'stop_update': self.get_attr("stop_update"),
785
            'op_role': OpRole.Optimize
J
JZ-LIANG 已提交
786 787
        }

788 789 790 791
        new_op = main_block.append_op(type='update_loss_scaling',
                                      inputs=inputs,
                                      outputs=outputs,
                                      attrs=attrs)
J
JZ-LIANG 已提交
792 793

        new_op_dist_attr = OperatorDistributedAttribute()
Z
zhaoyingli 已提交
794 795 796 797
        new_op_dist_attr.process_mesh = world_process_group.ranks
        new_op_dist_attr.impl_idx = 0
        if len(world_process_group.ranks) > 1:
            new_op_dist_attr.impl_type = "update_loss_scaling"
J
JZ-LIANG 已提交
798 799 800 801 802 803 804 805 806 807
        for g in grads:
            g_dist_attr = self.dist_context.get_tensor_dist_attr_for_program(g)
            assert g_dist_attr is not None
            new_op_dist_attr.set_input_dims_mapping(g.name,
                                                    g_dist_attr.dims_mapping)
            new_op_dist_attr.set_output_dims_mapping(g.name,
                                                     g_dist_attr.dims_mapping)
        self.dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)

        main_block._sync_with_cpp()
808 809 810 811 812 813 814 815 816 817

    def get_loss(self):
        # the amp / fp16 might change the effective loss variable for network and
        # therefore would affect the subsequent passes that rely on the loss.
        # return the effective loss after amp / fp16 pass.

        if self._loss:
            return self._loss
        else:
            return self.get_attr("loss")