auto_parallel_amp.py 32.5 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.framework import core
from paddle.fluid import unique_name
from .pass_base import PassBase, register_pass
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type
from paddle.distributed.auto_parallel.utils import get_loss_op, set_var_dist_attr
from paddle.distributed.auto_parallel.utils import naive_set_dist_op_attr_for_program_by_mesh_and_mapping
from paddle.distributed.auto_parallel.process_group import get_world_process_group
from paddle.fluid.contrib.mixed_precision.fp16_utils import AutoMixedPrecisionLists
from paddle.fluid.contrib.mixed_precision.fp16_utils import _keep_fp32_input, _keep_fp32_output, find_op_index
from paddle.fluid.contrib.mixed_precision.fp16_utils import _valid_types, find_true_post_op, find_true_prev_op
from paddle.fluid.contrib.mixed_precision.fp16_utils import _is_in_black_varnames, _dtype_to_str, _rename_arg
from paddle.distributed.auto_parallel.dist_attribute import OperatorDistributedAttribute
Z
zhaoyingli 已提交
29
world_process_group = get_world_process_group()
J
JZ-LIANG 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447


class AMPState(object):
    def __init__(self, block):
        self._block = block
        self._op_fp16_dict = {
        }  # op_id --> True/False. 'True' means that the current op is in fp16 mode.
        self._var_name_dict = {}  # fwd_op_id --> {old_name: cast_name}

    def _is_fp16_op(self, op_id):
        return self._op_fp16_dict.get(op_id, None)

    def _build_stats(self, amp_lists, dist_context):
        ops = self._block.ops
        dist_op_context = dist_context.dist_op_context
        for op in ops:
            if int(op.attr('op_role')) == int(OpRole.Forward):
                self._mark_black_white_ops(amp_lists)
            elif int(op.attr('op_role')) == int(OpRole.Backward):
                if op.desc.id() in dist_op_context.grad_op_id_to_op_id:
                    fwd_op_id = dist_op_context.grad_op_id_to_op_id[op.desc.id(
                    )]
                    if self._is_fp16_op(fwd_op_id) == True:
                        self._op_fp16_dict[op.desc.id()] = True
                    elif self._is_fp16_op(fwd_op_id) == False:
                        self._op_fp16_dict[op.desc.id()] = False
            elif int(op.attr('op_role')) == int(OpRole.Optimize):
                break

    def _mark_black_white_ops(self, amp_lists):
        """
        this function is modified from paddle.fluid.contrib.mixed_precision
        """
        self._block._sync_with_cpp()
        ops = self._block.ops

        for op in ops:
            if int(op.attr('op_role')) == int(OpRole.Backward):
                break
            if op.type == 'create_py_reader' or op.type == 'read':
                continue
            if amp_lists.black_varnames is not None and _is_in_black_varnames(
                    op, amp_lists):
                self._op_fp16_dict[op.desc.id()] = False
                continue
            if op.type in amp_lists.black_list:
                self._op_fp16_dict[op.desc.id()] = False
            elif op.type in amp_lists.white_list:
                self._op_fp16_dict[op.desc.id()] = True
            elif op.type in amp_lists.gray_list:
                is_black_op = False
                is_white_op = False
                for in_name in op.input_names:
                    # if this op has inputs
                    if in_name:
                        for in_var_name in op.input(in_name):
                            in_var = self._block.var(in_var_name)
                            # this in_var isn't the output of other op
                            if in_var.op is None:
                                continue
                            elif in_var.op is op:
                                prev_op = find_true_prev_op(ops, op,
                                                            in_var_name)
                                if prev_op is None:
                                    continue
                            else:
                                prev_op = in_var.op
                            # if it's one of inputs
                            if self._is_fp16_op(prev_op.desc.id()) == False or \
                                    prev_op.type in amp_lists.black_list:
                                is_black_op = True
                            elif self._is_fp16_op(prev_op.desc.id()) == True or \
                                    prev_op.type in amp_lists.white_list:
                                is_white_op = True
                if is_black_op:
                    self._op_fp16_dict[op.desc.id()] = False
                elif is_white_op:
                    self._op_fp16_dict[op.desc.id()] = True
                else:
                    pass
            else:
                # For numerical safe, we apply fp32 computation on ops that
                # are not determined which list they should stay.
                self._op_fp16_dict[op.desc.id()] = False

    def cast_forward_program(self, dist_context):
        ops = self._block.ops
        idx = 0
        while idx < len(ops):
            op = ops[idx]
            num_cast_ops = 0
            if int(op.attr('op_role')) == int(OpRole.Backward):
                break
            if self._is_fp16_op(op.desc.id()) == False:
                num_cast_ops = self._insert_cast_op_forward(
                    op, idx, core.VarDesc.VarType.FP16,
                    core.VarDesc.VarType.FP32, dist_context)
            elif self._is_fp16_op(op.desc.id()) == True:
                num_cast_ops = self._insert_cast_op_forward(
                    op, idx, core.VarDesc.VarType.FP32,
                    core.VarDesc.VarType.FP16, dist_context)
            else:
                pass
            idx += num_cast_ops + 1
        self._block._sync_with_cpp()

    def _insert_cast_op_forward(self, op, idx, src_dtype, dst_dtype,
                                dist_context):
        """
        only for forward cast
        modified from paddle.fluid.contrib.mixed_precision
        """
        num_cast_ops = 0

        for in_name in op.input_names:
            var_name_dict = {}
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
                    op, in_name):
                continue
            for in_var_name in op.input(in_name):
                in_var = self._block._find_var_recursive(in_var_name)
                if in_var.type not in _valid_types or in_var.dtype == dst_dtype:
                    continue
                if in_var.dtype == src_dtype:
                    cast_name = in_var.name + '.cast_' + _dtype_to_str(
                        dst_dtype)
                    out_var = self._block.vars.get(cast_name)
                    var_name_dict[in_var.name] = cast_name
                    consume_op_attr = dist_context.get_op_dist_attr_for_program(
                        op)
                    assert consume_op_attr is not None
                    if out_var is None or out_var.dtype != dst_dtype:
                        # NOTE we make the cast op and var's dist attr as the op that consume the
                        # cast var instead of the op which generates the var
                        in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                            in_var.name)
                        assert in_var_dist_attr is not None
                        ref_mesh = in_var_dist_attr.process_mesh
                        ref_mapping = in_var_dist_attr.dims_mapping
                        consume_op_attr.set_input_dist_attr(cast_name,
                                                            in_var_dist_attr)

                        out_var = self._block.create_var(
                            name=cast_name,
                            dtype=dst_dtype,
                            persistable=False,
                            stop_gradient=in_var.stop_gradient)
                        set_var_dist_attr(dist_context, out_var, ref_mapping,
                                          ref_mesh)

                        cast_op = self._block._insert_op_without_sync(
                            idx,
                            type="cast",
                            inputs={"X": in_var},
                            outputs={"Out": out_var},
                            attrs={
                                "in_dtype": in_var.dtype,
                                "out_dtype": out_var.dtype,
                            })
                        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                            cast_op, ref_mesh, ref_mapping, dist_context)
                        num_cast_ops += 1
                    else:
                        in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                            in_var.name)
                        consume_op_attr.set_input_dist_attr(cast_name,
                                                            in_var_dist_attr)
                    _rename_arg(op, in_var.name, cast_name)
                else:
                    if op.has_attr('in_dtype'):
                        op._set_attr('in_dtype', dst_dtype)
        self._var_name_dict[op.desc.id()] = var_name_dict

        if src_dtype == core.VarDesc.VarType.FP32 and dst_dtype == core.VarDesc.VarType.FP16:
            for out_name in op.output_names:
                if _keep_fp32_output(op, out_name):
                    continue
                for out_var_name in op.output(out_name):
                    out_var = self._block.var(out_var_name)
                    if out_var.type not in _valid_types:
                        continue
                    if out_var.dtype == core.VarDesc.VarType.FP32:
                        out_var.desc.set_dtype(core.VarDesc.VarType.FP16)
                        if op.has_attr('out_dtype'):
                            op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
        return num_cast_ops

    def cast_backward_program(self, params_grads, dist_context):
        self._block._sync_with_cpp()
        ops = self._block.ops

        loss_op = get_loss_op(self._block)
        loss_op_index = find_op_index(self._block.desc, loss_op.desc)

        idx = loss_op_index + 1
        while idx < len(ops):
            num_cast_ops = 0
            grad_op = ops[idx]
            dist_op_context = dist_context.dist_op_context
            if grad_op.desc.id() in dist_op_context.grad_op_id_to_op_id:
                if self._is_fp16_op(grad_op.desc.id()) == False:  # fp32
                    num_cast_ops = self._insert_cast_op_backward(
                        grad_op, idx, core.VarDesc.VarType.FP16,
                        core.VarDesc.VarType.FP32, dist_context)
                elif self._is_fp16_op(grad_op.desc.id()) == True:  # fp16
                    num_cast_ops = self._insert_cast_op_backward(
                        grad_op, idx, core.VarDesc.VarType.FP32,
                        core.VarDesc.VarType.FP16, dist_context)
            elif grad_op.type == "sum":
                in_var_name = grad_op.desc.input_arg_names()[0]
                src_dtype = self._block.var(in_var_name).dtype
                for in_var_name in grad_op.desc.input_arg_names():
                    assert src_dtype == self._block.var(in_var_name).dtype
                out_var_name = grad_op.desc.output_arg_names()[0]
                out_var = self._block.var(out_var_name)
                if out_var.dtype != src_dtype:
                    out_var.desc.set_dtype(src_dtype)
            elif int(grad_op.attr('op_role')) == 257:
                pass
            else:
                raise ValueError(
                    "'{}' op is not supported in the complete amp pass.".format(
                        grad_op.type))
            idx += num_cast_ops + 1

        self._block._sync_with_cpp()
        _update_backward_cast_ops(params_grads, dist_context)

    def _insert_cast_op_backward(self, grad_op, idx, src_dtype, dst_dtype,
                                 dist_context):
        """ only for backward cast """

        def _keep_fp32_input(op, in_name):
            op_type = op.type
            if op_type in ['layer_norm_grad']:
                return in_name not in {'X', 'Y@GRAD'}
            return False

        def _keep_fp32_output(op, out_name):
            op_type = op.type
            if op_type in ['layer_norm_grad']:
                return out_name != 'X@GRAD'
            return False

        num_cast_ops = 0
        dist_op_context = dist_context.dist_op_context
        fwd_op_id = dist_op_context.grad_op_id_to_op_id[grad_op.desc.id()]

        for in_name in grad_op.input_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
                    grad_op, in_name):
                for in_var_name in grad_op.input(in_name):
                    in_var = self._block._find_var_recursive(in_var_name)
                    assert in_var.dtype == core.VarDesc.VarType.FP32
                continue

            for in_var_name in grad_op.input(in_name):
                in_var = self._block._find_var_recursive(in_var_name)
                if in_var.dtype == src_dtype:
                    consume_op_attr = dist_context.get_op_dist_attr_for_program(
                        grad_op)
                    if in_var_name in self._var_name_dict[fwd_op_id]:
                        # NOTE: if in_var of consume grad_op has been casted before,
                        # it should be renamed and reset dist_attr.
                        cast_name = self._var_name_dict[fwd_op_id][in_var_name]
                        grad_op.desc._rename_input(in_var_name, cast_name)
                        in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                            in_var_name)
                        consume_op_attr.set_input_dist_attr(cast_name,
                                                            in_var_dist_attr)
                    else:
                        assert in_var.dtype == dst_dtype

        for out_name in grad_op.output_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_output(
                    grad_op, out_name):
                for out_var_name in grad_op.output(out_name):
                    out_var = self._block._find_var_recursive(out_var_name)
                    assert out_var.dtype == core.VarDesc.VarType.FP32
                continue

            for out_var_name in grad_op.output(out_name):
                out_var = self._block._find_var_recursive(out_var_name)
                out_var_name_prefix = out_var_name[:out_var_name.find("@")]
                fwd_var = self._block._find_var_recursive(out_var_name_prefix)
                # NOTE: the out_var's dtype of consume grad_op should equal to the fwd_var's dtype
                if out_var.dtype != fwd_var.dtype:
                    out_var.desc.set_dtype(fwd_var.dtype)

                if out_var.dtype == src_dtype:
                    if out_var_name_prefix in self._var_name_dict[fwd_op_id]:
                        # NOTE: if out_var of consume grad_op has been casted before,
                        # it should be renamed and reset dist_attr, then we insert cast op to
                        # convert the cast_var to original dtype
                        consume_op_attr = dist_context.get_op_dist_attr_for_program(
                            grad_op)
                        fwd_cast_name = self._var_name_dict[fwd_op_id][
                            out_var_name_prefix]
                        cast_name = fwd_cast_name + "@GRAD"
                        cast_var = self._block.vars.get(cast_name)
                        if cast_var is None or cast_var.dtype != dst_dtype:
                            grad_op.desc._rename_output(out_var_name, cast_name)
                            out_var_dist_attr = consume_op_attr.get_output_dist_attr(
                                out_var_name)
                            ref_mesh = out_var_dist_attr.process_mesh
                            ref_mapping = out_var_dist_attr.dims_mapping
                            consume_op_attr.set_output_dist_attr(
                                cast_name, out_var_dist_attr)
                            assert ref_mapping is not None
                            cast_var = self._block.create_var(
                                name=cast_name,
                                shape=out_var.shape,
                                dtype=dst_dtype,
                                persistable=False,
                                stop_gradient=out_var.stop_gradient)
                            set_var_dist_attr(dist_context, cast_var,
                                              ref_mapping, ref_mesh)

                            cast_op = self._block._insert_op(
                                idx + 1,
                                type="cast",
                                inputs={"X": cast_var},
                                outputs={"Out": out_var},
                                attrs={
                                    "in_dtype": cast_var.dtype,
                                    "out_dtype": out_var.dtype,
                                    "op_role": OpRole.Backward
                                })
                            cast_op._remove_attr("op_role_var")
                            cast_op._remove_attr("op_namescope")
                            cast_op._remove_attr("with_quant_attr")
                            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                                cast_op, ref_mesh, ref_mapping, dist_context)
                            num_cast_ops += 1
                else:
                    assert out_var.dtype == dst_dtype

        return num_cast_ops


def _update_backward_cast_ops(params_grads, dist_context):
    """
    move param grad cast to the end of backward segment
    in order to enabel fp16 allreduce
    """
    # TODO filter optimize ops in future

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    for p, g in params_grads:
        op = g.op
        if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast':
            if int(op.attr('op_role')) == int(OpRole.Backward) and op.has_attr(
                    'op_role_var'):
                op._remove_attr("op_role_var")

            post_ops = find_true_post_op(main_block.ops, op, g.name)
            if post_ops:
                raise ValueError("The cast op {0}'s output should not be"
                                 "used by a non-optimize op, however, it"
                                 "is used by {1}".format(op, post_ops[0]))

            if op == main_block.ops[-1]:
                continue

            # add new op in the python and cpp at the same time
            new_op_desc = main_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            new_op = paddle.fluid.framework.Operator(
                block=main_block,
                desc=new_op_desc,
                type=None,
                inputs=None,
                outputs=None,
                attrs=None)
            main_block.ops.append(new_op)

            # dist attr
            param_dist_attr = dist_context.get_tensor_dist_attr_for_program(p)
            output_dist_attr = dist_context.get_tensor_dist_attr_for_program(
                main_block.var(op.output_arg_names[0]))
            assert param_dist_attr is not None
            assert output_dist_attr is not None
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                new_op, param_dist_attr.process_mesh,
                param_dist_attr.dims_mapping, dist_context)

            output_dist_attr.process_mesh = param_dist_attr.process_mesh
            output_dist_attr.dims_mapping = param_dist_attr.dims_mapping

            op_idx = find_op_index(main_block.desc, op.desc)
            if op_idx == -1:
                raise ValueError("The op {0} is not in program".format(op))
            main_block._remove_op(op_idx, sync=False)

    main_block._sync_with_cpp()


def _check_and_update_gradient(params_grads, loss_scaling, dist_context):

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    grads = [g for _, g in params_grads]
    check_type(grads, 'x', (tuple, list), 'check_finite_and_unscale')
    for e in grads:
        check_variable_and_dtype(e, "x", ['float16', 'float32', 'float64'],
                                 'check_finite_and_unscale')

    found_inf = main_block.create_var(
        name=unique_name.generate_with_ignorable_key(".".join(
            ['find_infinite_scale', 'tmp'])),
        shape=[1],
        dtype='bool',
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=False)
Z
zhaoyingli 已提交
448
    set_var_dist_attr(dist_context, found_inf, [-1], world_process_group.ranks)
J
JZ-LIANG 已提交
449 450 451 452 453 454 455 456 457 458 459

    inputs = {'X': grads, 'Scale': loss_scaling}
    outputs = {'Out': grads, 'FoundInfinite': found_inf}
    attrs = {'op_role': OpRole.Backward}
    new_op = main_block.append_op(
        type='check_finite_and_unscale',
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)

    new_op_dist_attr = OperatorDistributedAttribute()
Z
zhaoyingli 已提交
460 461 462 463
    new_op_dist_attr.process_mesh = world_process_group.ranks
    new_op_dist_attr.impl_idx = 0
    if len(world_process_group.ranks) > 1:
        new_op_dist_attr.impl_type = "check_finite_and_unscale"
J
JZ-LIANG 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    for g in grads:
        g_dist_attr = dist_context.get_tensor_dist_attr_for_program(g)
        assert g_dist_attr is not None
        new_op_dist_attr.set_input_dims_mapping(g.name,
                                                g_dist_attr.dims_mapping)
        new_op_dist_attr.set_output_dims_mapping(g.name,
                                                 g_dist_attr.dims_mapping)
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)
    return grads, found_inf


@register_pass("auto_parallel_amp")
class AMPPass(PassBase):
    def __init__(self):
        super(AMPPass, self).__init__()
        self.set_attr("loss", None)
        self.set_attr("dist_context", None)
        self.set_attr("custom_white_list", None)
        self.set_attr("custom_black_list", None)
        self.set_attr("custom_black_varnames", None)
        self.set_attr("init_loss_scaling", 32768.0)
        self.set_attr("incr_every_n_steps", 1000)
        self.set_attr("decr_every_n_nan_or_inf", 2)
        self.set_attr("incr_ratio", 2.0)
        self.set_attr("decr_ratio", 0.8)
        self.set_attr("use_dynamic_loss_scaling", False)
        self.set_attr("params_grads", [])
        self._loss_scaling = None
        self._num_good_steps = None
        self._num_bad_steps = None

    def _check_self(self):
        if self.get_attr("init_loss_scaling") < 0:
            return False
        if self.get_attr("incr_every_n_steps") < 0:
            return False
        if self.get_attr("decr_every_n_nan_or_inf") < 0:
            return False
        if self.get_attr("incr_ratio") < 0:
            return False
        if self.get_attr("decr_ratio") < 0:
            return False
        if len(self.get_attr("params_grads")) <= 0:
            return False
        if self.get_attr("dist_context") is None:
            return False
        return True

    def _check_conflict(self, other_pass):

        return True

    # NOTE: why AMPBackwardPass can override apply_single_impl instead of 
    # apply_impl? AMP is an optimization pass for serial program, 
    # in distributed scenario, all ranks should have the same modification.
    def _apply_single_impl(self, main_program, startup_program, context):
        self.dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")

        amp_lists = AutoMixedPrecisionLists(
            set(self.get_attr("custom_white_list")),
            set(self.get_attr("custom_black_list")),
            set(self.get_attr("custom_black_varnames")))

        amp_state = AMPState(main_program.global_block())
        amp_state._build_stats(amp_lists, self.dist_context)

        with paddle.static.program_guard(main_program, startup_program):
            amp_state.cast_forward_program(self.dist_context)
            amp_state.cast_backward_program(params_grads, self.dist_context)
            # TODO (JZ-LIANG)support cast forward program only when inference 
            self._init_amp_var()
            self._scale_loss()

            if self.get_attr("use_dynamic_loss_scaling") or self.get_attr(
                    "init_loss_scaling") != 1.0:
                grads, found_inf = _check_and_update_gradient(
                    params_grads, self._loss_scaling, self.dist_context)

            if self.get_attr("use_dynamic_loss_scaling"):
                self._update_loss_scaling(grads, found_inf)

    def _init_amp_var(self):
        self._loss_scaling = paddle.static.create_global_var(
            name=unique_name.generate("loss_scaling"),
            shape=[1],
            value=self.get_attr("init_loss_scaling"),
            dtype='float32',
            persistable=True)
        set_var_dist_attr(self.dist_context, self._loss_scaling, [-1],
Z
zhaoyingli 已提交
554
                          world_process_group.ranks)
J
JZ-LIANG 已提交
555 556 557 558 559 560 561 562 563

        if self.get_attr("use_dynamic_loss_scaling"):
            self._num_good_steps = paddle.static.create_global_var(
                name=unique_name.generate("num_good_steps"),
                shape=[1],
                value=0,
                dtype='int32',
                persistable=True)
            set_var_dist_attr(self.dist_context, self._num_good_steps, [-1],
Z
zhaoyingli 已提交
564
                              world_process_group.ranks)
J
JZ-LIANG 已提交
565 566 567 568 569 570 571 572

            self._num_bad_steps = paddle.static.create_global_var(
                name=unique_name.generate("num_bad_steps"),
                shape=[1],
                value=0,
                dtype='int32',
                persistable=True)
            set_var_dist_attr(self.dist_context, self._num_bad_steps, [-1],
Z
zhaoyingli 已提交
573
                              world_process_group.ranks)
J
JZ-LIANG 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

    def _scale_loss(self):

        main_block = paddle.static.default_main_program().global_block()
        main_block._sync_with_cpp()
        loss = self.get_attr("loss")
        assert loss is not None
        loss_op = loss.op
        loss_op_dist_attr = self.dist_context.get_op_dist_attr_for_program(
            loss_op)

        if loss.dtype != core.VarDesc.VarType.FP32:
            loss = loss.astype('float32')

        if self.get_attr("use_dynamic_loss_scaling") or self.get_attr(
                "init_loss_scaling") != 1.0:

            loss_op_idx = find_op_index(main_block.desc, loss_op.desc)

            # forward
            ref_mesh = loss_op_dist_attr.process_mesh
            self._scaled_loss = main_block.create_var(
                name=unique_name.generate("scaled_loss"),
                shape=loss.shape,
                dtype=loss.dtype,
                persistable=loss.persistable)
            set_var_dist_attr(self.dist_context, self._scaled_loss, [-1],
                              ref_mesh)

            OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
            elementwise_mul_op = main_block._insert_op(
                loss_op_idx + 1,
                type='elementwise_mul',
                inputs={'X': [loss],
                        'Y': [self._loss_scaling]},
                outputs={'Out': [self._scaled_loss]},
                attrs={'op_role': loss_op.all_attrs()[OP_ROLE_KEY], })
            loss_op._set_attr(OP_ROLE_KEY,
                              core.op_proto_and_checker_maker.OpRole.Forward)
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                elementwise_mul_op, ref_mesh, [-1], self.dist_context)

            # backward
            first_backward_op = main_block.ops[loss_op_idx + 2]
            assert first_backward_op.type == "fill_constant" and int(
                first_backward_op.all_attrs()[OP_ROLE_KEY]) == 257
            self._scaled_loss_grad = main_block.create_var(
                name=unique_name.generate("scaled_loss") + "@GRAD",
                shape=loss.shape,
                dtype=loss.dtype,
                persistable=loss.persistable)
            set_var_dist_attr(self.dist_context, self._scaled_loss_grad, [-1],
                              ref_mesh)
            pre_grad_name = first_backward_op.output_arg_names[0]
            first_backward_op._rename_output(pre_grad_name,
                                             self._scaled_loss_grad.name)
            # FIXME(JZ-LIANG) a trick to insert backward op
            main_block._sync_with_cpp()
            elementwise_mul_grad_op_desc = main_block.desc._insert_op(
                loss_op_idx + 3)
            elementwise_mul_grad_op_desc.set_type("elementwise_mul_grad")
            elementwise_mul_grad_op_desc.set_input(
                'Out@GRAD', [self._scaled_loss_grad.name])
            elementwise_mul_grad_op_desc.set_input('X', [loss.name])
            elementwise_mul_grad_op_desc.set_input('Y',
                                                   [self._loss_scaling.name])
            elementwise_mul_grad_op_desc.set_output('X@GRAD', [pre_grad_name])
            elementwise_mul_grad_op_desc.set_output('Y@GRAD', [])
            elementwise_mul_grad_op_desc._set_attr(
                OP_ROLE_KEY, core.op_proto_and_checker_maker.OpRole.Backward)
            elementwise_mul_grad_op_desc._set_attr('axis', -1)
            elementwise_mul_grad_op = paddle.fluid.framework.Operator(
                main_block, elementwise_mul_grad_op_desc)
            main_block.ops.insert(loss_op_idx + 3, elementwise_mul_grad_op)
            main_block._sync_with_cpp()
            elementwise_mul_grad_op = main_block.ops[loss_op_idx + 3]
            assert elementwise_mul_grad_op.type == "elementwise_mul_grad"
            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                elementwise_mul_grad_op, ref_mesh, [-1], self.dist_context)

        else:
            self._scaled_loss = loss

        main_block._sync_with_cpp()

    def _update_loss_scaling(self, grads, found_inf):

        main_block = paddle.static.default_main_program().global_block()
        main_block._sync_with_cpp()

        check_variable_and_dtype(self._loss_scaling, "prev_loss_scaling",
                                 ['float32', 'float64'], "update_loss_scaling")
        check_type(grads, 'x', (tuple, list), 'update_loss_scaling')
        for e in grads:
            check_variable_and_dtype(e, "x", ['float16', 'float32', 'float64'],
                                     'update_loss_scaling')
            assert self._loss_scaling.dtype == e.dtype, \
                "The dtype of prev_loss_scaling should be equal to the dtype of x."

        inputs = {
            'X': grads,
            'FoundInfinite': found_inf,
            'PrevLossScaling': self._loss_scaling,
            'InGoodSteps': self._num_good_steps,
            'InBadSteps': self._num_bad_steps
        }

        outputs = {
            'Out': grads,
            'LossScaling': self._loss_scaling,
            'OutGoodSteps': self._num_good_steps,
            'OutBadSteps': self._num_bad_steps
        }

        attrs = {
            'incr_every_n_steps': self.get_attr("incr_every_n_steps"),
            'decr_every_n_nan_or_inf': self.get_attr("decr_every_n_nan_or_inf"),
            'incr_ratio': self.get_attr("incr_ratio"),
            'decr_ratio': self.get_attr("decr_ratio"),
            'stop_update': self.get_attr("stop_update"),
            'op_role': OpRole.Backward
        }

        new_op = main_block.append_op(
            type='update_loss_scaling',
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        new_op_dist_attr = OperatorDistributedAttribute()
Z
zhaoyingli 已提交
704 705 706 707
        new_op_dist_attr.process_mesh = world_process_group.ranks
        new_op_dist_attr.impl_idx = 0
        if len(world_process_group.ranks) > 1:
            new_op_dist_attr.impl_type = "update_loss_scaling"
J
JZ-LIANG 已提交
708 709 710 711 712 713 714 715 716 717
        for g in grads:
            g_dist_attr = self.dist_context.get_tensor_dist_attr_for_program(g)
            assert g_dist_attr is not None
            new_op_dist_attr.set_input_dims_mapping(g.name,
                                                    g_dist_attr.dims_mapping)
            new_op_dist_attr.set_output_dims_mapping(g.name,
                                                     g_dist_attr.dims_mapping)
        self.dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)

        main_block._sync_with_cpp()