graph_sample_neighbors.py 7.1 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
from paddle import _legacy_C_ops
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid.layer_helper import LayerHelper
18
from paddle.framework import in_dynamic_mode
19
from paddle.utils import deprecated
S
Siming Dai 已提交
20 21


22 23 24 25
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.sample_neighbors",
    level=1,
26 27 28 29 30 31 32 33 34 35 36 37 38
    reason="paddle.incubate.graph_sample_neighbors will be removed in future",
)
def graph_sample_neighbors(
    row,
    colptr,
    input_nodes,
    eids=None,
    perm_buffer=None,
    sample_size=-1,
    return_eids=False,
    flag_perm_buffer=False,
    name=None,
):
S
Siming Dai 已提交
39
    """
40

S
Siming Dai 已提交
41 42 43
    Graph Sample Neighbors API.

    This API is mainly used in Graph Learning domain, and the main purpose is to
44 45
    provide high performance of graph sampling method. For example, we get the
    CSC(Compressed Sparse Column) format of the input graph edges as `row` and
S
Siming Dai 已提交
46
    `colptr`, so as to convert graph data into a suitable format for sampling.
47
    `input_nodes` means the nodes we need to sample neighbors, and `sample_sizes`
S
Siming Dai 已提交
48 49
    means the number of neighbors and number of layers we want to sample.

50
    Besides, we support fisher-yates sampling in GPU version.
S
Siming Dai 已提交
51 52 53 54 55 56 57 58 59 60 61

    Args:
        row (Tensor): One of the components of the CSC format of the input graph, and
                      the shape should be [num_edges, 1] or [num_edges]. The available
                      data type is int32, int64.
        colptr (Tensor): One of the components of the CSC format of the input graph,
                         and the shape should be [num_nodes + 1, 1] or [num_nodes + 1].
                         The data type should be the same with `row`.
        input_nodes (Tensor): The input nodes we need to sample neighbors for, and the
                              data type should be the same with `row`.
        eids (Tensor): The eid information of the input graph. If return_eids is True,
62
                            then `eids` should not be None. The data type should be the
S
Siming Dai 已提交
63 64 65
                            same with `row`. Default is None.
        perm_buffer (Tensor): Permutation buffer for fisher-yates sampling. If `flag_perm_buffer`
                              is True, then `perm_buffer` should not be None. The data type should
66 67
                              be the same with `row`. Default is None.
        sample_size (int): The number of neighbors we need to sample. Default value is
S
Siming Dai 已提交
68 69
                           -1, which means returning all the neighbors of the input nodes.
        return_eids (bool): Whether to return eid information of sample edges. Default is False.
70 71
        flag_perm_buffer (bool): Using the permutation for fisher-yates sampling in GPU. Default
                                 value is false, means not using it.
S
Siming Dai 已提交
72 73 74 75
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
76 77 78
        - out_neighbors (Tensor): The sample neighbors of the input nodes.
        - out_count (Tensor): The number of sampling neighbors of each input node, and the shape should be the same with `input_nodes`.
        - out_eids (Tensor): If `return_eids` is True, we will return the eid information of the sample edges.
S
Siming Dai 已提交
79 80 81

    Examples:
        .. code-block:: python
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            >>> import paddle
            >>> # edges: (3, 0), (7, 0), (0, 1), (9, 1), (1, 2), (4, 3), (2, 4),
            >>> #        (9, 5), (3, 5), (9, 6), (1, 6), (9, 8), (7, 8)
            >>> row = [3, 7, 0, 9, 1, 4, 2, 9, 3, 9, 1, 9, 7]
            >>> colptr = [0, 2, 4, 5, 6, 7, 9, 11, 11, 13, 13]
            >>> nodes = [0, 8, 1, 2]
            >>> sample_size = 2
            >>> row = paddle.to_tensor(row, dtype="int64")
            >>> colptr = paddle.to_tensor(colptr, dtype="int64")
            >>> nodes = paddle.to_tensor(nodes, dtype="int64")
            >>> out_neighbors, out_count = paddle.incubate.graph_sample_neighbors(
            ...     row,
            ...     colptr,
            ...     nodes,
            ...     sample_size=sample_size
            ... )
S
Siming Dai 已提交
99 100 101 102 103 104

    """

    if return_eids:
        if eids is None:
            raise ValueError(
105 106
                "`eids` should not be None if `return_eids` is True."
            )
S
Siming Dai 已提交
107 108 109 110

    if flag_perm_buffer:
        if perm_buffer is None:
            raise ValueError(
111
                "`perm_buffer` should not be None if `flag_perm_buffer`"
112 113
                "is True."
            )
S
Siming Dai 已提交
114

115
    if in_dynamic_mode():
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        (
            out_neighbors,
            out_count,
            out_eids,
        ) = _legacy_C_ops.graph_sample_neighbors(
            row,
            colptr,
            input_nodes,
            eids,
            perm_buffer,
            "sample_size",
            sample_size,
            "return_eids",
            return_eids,
            "flag_perm_buffer",
            flag_perm_buffer,
        )
S
Siming Dai 已提交
133 134 135 136
        if return_eids:
            return out_neighbors, out_count, out_eids
        return out_neighbors, out_count

137 138 139 140 141 142 143 144 145
    check_variable_and_dtype(
        row, "Row", ("int32", "int64"), "graph_sample_neighbors"
    )
    check_variable_and_dtype(
        colptr, "Col_Ptr", ("int32", "int64"), "graph_sample_neighbors"
    )
    check_variable_and_dtype(
        input_nodes, "X", ("int32", "int64"), "graph_sample_neighbors"
    )
S
Siming Dai 已提交
146
    if return_eids:
147 148 149
        check_variable_and_dtype(
            eids, "Eids", ("int32", "int64"), "graph_sample_neighbors"
        )
S
Siming Dai 已提交
150
    if flag_perm_buffer:
151 152 153 154 155 156
        check_variable_and_dtype(
            perm_buffer,
            "Perm_Buffer",
            ("int32", "int64"),
            "graph_sample_neighbors",
        )
S
Siming Dai 已提交
157 158 159 160 161

    helper = LayerHelper("graph_sample_neighbors", **locals())
    out_neighbors = helper.create_variable_for_type_inference(dtype=row.dtype)
    out_count = helper.create_variable_for_type_inference(dtype=row.dtype)
    out_eids = helper.create_variable_for_type_inference(dtype=row.dtype)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    helper.append_op(
        type="graph_sample_neighbors",
        inputs={
            "Row": row,
            "Col_Ptr": colptr,
            "X": input_nodes,
            "Eids": eids if return_eids else None,
            "Perm_Buffer": perm_buffer if flag_perm_buffer else None,
        },
        outputs={
            "Out": out_neighbors,
            "Out_Count": out_count,
            "Out_Eids": out_eids,
        },
        attrs={
            "sample_size": sample_size,
            "return_eids": return_eids,
            "flag_perm_buffer": flag_perm_buffer,
        },
    )
S
Siming Dai 已提交
182 183 184
    if return_eids:
        return out_neighbors, out_count, out_eids
    return out_neighbors, out_count