graph_sample_neighbors.py 7.0 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
18
from paddle import _legacy_C_ops
19
import paddle.utils.deprecated as deprecated
S
Siming Dai 已提交
20 21


22 23 24 25
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.sample_neighbors",
    level=1,
26 27 28 29 30 31 32 33 34 35 36 37 38
    reason="paddle.incubate.graph_sample_neighbors will be removed in future",
)
def graph_sample_neighbors(
    row,
    colptr,
    input_nodes,
    eids=None,
    perm_buffer=None,
    sample_size=-1,
    return_eids=False,
    flag_perm_buffer=False,
    name=None,
):
S
Siming Dai 已提交
39 40 41 42
    """
    Graph Sample Neighbors API.

    This API is mainly used in Graph Learning domain, and the main purpose is to
43 44
    provide high performance of graph sampling method. For example, we get the
    CSC(Compressed Sparse Column) format of the input graph edges as `row` and
S
Siming Dai 已提交
45
    `colptr`, so as to convert graph data into a suitable format for sampling.
46
    `input_nodes` means the nodes we need to sample neighbors, and `sample_sizes`
S
Siming Dai 已提交
47 48
    means the number of neighbors and number of layers we want to sample.

49
    Besides, we support fisher-yates sampling in GPU version.
S
Siming Dai 已提交
50 51 52 53 54 55 56 57 58 59 60

    Args:
        row (Tensor): One of the components of the CSC format of the input graph, and
                      the shape should be [num_edges, 1] or [num_edges]. The available
                      data type is int32, int64.
        colptr (Tensor): One of the components of the CSC format of the input graph,
                         and the shape should be [num_nodes + 1, 1] or [num_nodes + 1].
                         The data type should be the same with `row`.
        input_nodes (Tensor): The input nodes we need to sample neighbors for, and the
                              data type should be the same with `row`.
        eids (Tensor): The eid information of the input graph. If return_eids is True,
61
                            then `eids` should not be None. The data type should be the
S
Siming Dai 已提交
62 63 64
                            same with `row`. Default is None.
        perm_buffer (Tensor): Permutation buffer for fisher-yates sampling. If `flag_perm_buffer`
                              is True, then `perm_buffer` should not be None. The data type should
65 66
                              be the same with `row`. Default is None.
        sample_size (int): The number of neighbors we need to sample. Default value is
S
Siming Dai 已提交
67 68
                           -1, which means returning all the neighbors of the input nodes.
        return_eids (bool): Whether to return eid information of sample edges. Default is False.
69 70
        flag_perm_buffer (bool): Using the permutation for fisher-yates sampling in GPU. Default
                                 value is false, means not using it.
S
Siming Dai 已提交
71 72 73 74 75 76 77
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out_neighbors (Tensor): The sample neighbors of the input nodes.
        out_count (Tensor): The number of sampling neighbors of each input node, and the shape
                            should be the same with `input_nodes`.
78
        out_eids (Tensor): If `return_eids` is True, we will return the eid information of the
S
Siming Dai 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
                           sample edges.

    Examples:
        .. code-block:: python
        import paddle
        # edges: (3, 0), (7, 0), (0, 1), (9, 1), (1, 2), (4, 3), (2, 4),
        #        (9, 5), (3, 5), (9, 6), (1, 6), (9, 8), (7, 8)
        row = [3, 7, 0, 9, 1, 4, 2, 9, 3, 9, 1, 9, 7]
        colptr = [0, 2, 4, 5, 6, 7, 9, 11, 11, 13, 13]
        nodes = [0, 8, 1, 2]
        sample_size = 2
        row = paddle.to_tensor(row, dtype="int64")
        colptr = paddle.to_tensor(colptr, dtype="int64")
        nodes = paddle.to_tensor(nodes, dtype="int64")
        out_neighbors, out_count = \
94
            paddle.incubate.graph_sample_neighbors(row, colptr, nodes,
S
Siming Dai 已提交
95 96 97 98 99 100 101
                                                   sample_size=sample_size)

    """

    if return_eids:
        if eids is None:
            raise ValueError(
102 103
                "`eids` should not be None if `return_eids` is True."
            )
S
Siming Dai 已提交
104 105 106 107

    if flag_perm_buffer:
        if perm_buffer is None:
            raise ValueError(
108
                "`perm_buffer` should not be None if `flag_perm_buffer`"
109 110
                "is True."
            )
S
Siming Dai 已提交
111 112

    if _non_static_mode():
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        (
            out_neighbors,
            out_count,
            out_eids,
        ) = _legacy_C_ops.graph_sample_neighbors(
            row,
            colptr,
            input_nodes,
            eids,
            perm_buffer,
            "sample_size",
            sample_size,
            "return_eids",
            return_eids,
            "flag_perm_buffer",
            flag_perm_buffer,
        )
S
Siming Dai 已提交
130 131 132 133
        if return_eids:
            return out_neighbors, out_count, out_eids
        return out_neighbors, out_count

134 135 136 137 138 139 140 141 142
    check_variable_and_dtype(
        row, "Row", ("int32", "int64"), "graph_sample_neighbors"
    )
    check_variable_and_dtype(
        colptr, "Col_Ptr", ("int32", "int64"), "graph_sample_neighbors"
    )
    check_variable_and_dtype(
        input_nodes, "X", ("int32", "int64"), "graph_sample_neighbors"
    )
S
Siming Dai 已提交
143
    if return_eids:
144 145 146
        check_variable_and_dtype(
            eids, "Eids", ("int32", "int64"), "graph_sample_neighbors"
        )
S
Siming Dai 已提交
147
    if flag_perm_buffer:
148 149 150 151 152 153
        check_variable_and_dtype(
            perm_buffer,
            "Perm_Buffer",
            ("int32", "int64"),
            "graph_sample_neighbors",
        )
S
Siming Dai 已提交
154 155 156 157 158

    helper = LayerHelper("graph_sample_neighbors", **locals())
    out_neighbors = helper.create_variable_for_type_inference(dtype=row.dtype)
    out_count = helper.create_variable_for_type_inference(dtype=row.dtype)
    out_eids = helper.create_variable_for_type_inference(dtype=row.dtype)
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    helper.append_op(
        type="graph_sample_neighbors",
        inputs={
            "Row": row,
            "Col_Ptr": colptr,
            "X": input_nodes,
            "Eids": eids if return_eids else None,
            "Perm_Buffer": perm_buffer if flag_perm_buffer else None,
        },
        outputs={
            "Out": out_neighbors,
            "Out_Count": out_count,
            "Out_Eids": out_eids,
        },
        attrs={
            "sample_size": sample_size,
            "return_eids": return_eids,
            "flag_perm_buffer": flag_perm_buffer,
        },
    )
S
Siming Dai 已提交
179 180 181
    if return_eids:
        return out_neighbors, out_count, out_eids
    return out_neighbors, out_count