lookup_table_op.h 10.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
23
#include "paddle/fluid/framework/selected_rows_utils.h"
24
#include "paddle/phi/kernels/funcs/blas/blas.h"
25 26 27 28

namespace paddle {
namespace operators {

C
chengduoZH 已提交
29
using Tensor = framework::Tensor;
F
fengjiayi 已提交
30
using LoDTensor = framework::LoDTensor;
31
using SelectedRows = phi::SelectedRows;
32 33
using DDim = framework::DDim;

Q
qiaolongfei 已提交
34
constexpr int64_t kNoPadding = -1;
35 36

template <typename T>
Y
Yu Yang 已提交
37
class LookupTableKernel : public framework::OpKernel<T> {
38
 public:
39
  void Compute(const framework::ExecutionContext &context) const override {
40 41
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
42
    auto *table_var = context.InputVar("W");
43

H
hong 已提交
44 45 46
    auto id_name = context.InputNames("Ids").front();
    auto embedding_name = context.InputNames("W").front();
    auto out_name = context.OutputNames("Out").front();
Q
Qiao Longfei 已提交
47

48 49
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    bool is_test = context.Attr<bool>("is_test");
Q
Qiao Longfei 已提交
50

51 52
    int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
    int64_t ids_numel = ids_t->numel();
Q
Qiao Longfei 已提交
53

54 55 56 57 58 59 60 61 62 63 64 65 66
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];

      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(
67 68
              ids[i],
              row_number,
69 70 71 72
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
73 74
                  row_number,
                  ids[i]));
75
          PADDLE_ENFORCE_GE(
76 77
              ids[i],
              0,
78 79 80 81
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
82 83 84 85
                  row_number,
                  ids[i]));
          memcpy(output + i * row_width,
                 table + ids[i] * row_width,
86
                 row_width * sizeof(T));
87
        }
88 89
      }

90 91
    } else if (table_var->IsType<phi::SelectedRows>()) {
      const auto &table_t = table_var->Get<phi::SelectedRows>();
92 93 94
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
95 96
      auto input_data_type =
          framework::TransToProtoVarType(table_t.value().dtype());
97 98 99 100 101
      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_GE(
102 103
              ids[i],
              0,
104 105 106 107 108 109 110 111
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0. But received %ld",
                  ids[i]));
          if (is_test) {
            auto id_index = table_t.GetIndexFromId(ids[i]);

            if (id_index != -1) {
112
              if (input_data_type == framework::proto::VarType::INT8 ||
113
                  input_data_type == framework::proto::VarType::INT16 ||
114
                  input_data_type == framework::proto::VarType::BF16) {
115 116
                memcpy(output + i * row_width,
                       table + id_index * row_width,
117 118
                       row_width * sizeof(T));
              } else {
119 120
                auto blas =
                    phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
121 122
                blas.VCOPY(row_width,
                           table + id_index * row_width,
123 124 125 126 127
                           output + i * row_width);
              }
            } else {
              memset(output + i * row_width, 0, row_width * sizeof(T));
            }
Q
Qiao Longfei 已提交
128
          } else {
129
            auto id_index = table_t.Index(ids[i]);
130
            PADDLE_ENFORCE_GE(
131 132
                ids[i],
                0,
133 134 135 136
                platform::errors::InvalidArgument(
                    "Variable value (input) of OP(fluid.layers.embedding) "
                    "expected >= 0. But received %ld",
                    ids[i]));
137
            PADDLE_ENFORCE_GE(
138 139
                id_index,
                0,
140 141 142
                platform::errors::InvalidArgument(
                    "the input key should be exists. But received %d.",
                    id_index));
143

144
            if (input_data_type == framework::proto::VarType::INT8 ||
145
                input_data_type == framework::proto::VarType::INT16 ||
146
                input_data_type == framework::proto::VarType::BF16) {
147 148
              memcpy(output + i * row_width,
                     table + id_index * row_width,
149 150
                     row_width * sizeof(T));
            } else {
151
              auto blas =
152
                  phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
153 154
              blas.VCOPY(row_width,
                         table + id_index * row_width,
155 156
                         output + i * row_width);
            }
Q
Qiao Longfei 已提交
157
          }
158 159
        }
      }
160 161 162 163 164
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
165
class LookupTableGradKernel : public framework::OpKernel<T> {
166
 public:
167
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
168 169 170 171
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
172 173
    } else if (table_var->IsType<phi::SelectedRows>()) {
      auto *table_t = context.Input<phi::SelectedRows>("W");
Q
qiaolongfei 已提交
174 175
      table_dim = table_t->value().dims();
    } else {
176
      PADDLE_THROW(platform::errors::InvalidArgument(
Q
qiaolongfei 已提交
177
          "The parameter W of a LookupTable "
178
          "must be either LoDTensor or SelectedRows"));
Q
qiaolongfei 已提交
179 180
    }

181
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
182
    bool is_sparse = context.Attr<bool>("is_sparse");
183 184
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
185
    if (is_sparse) {
186 187
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
188
      auto *d_table =
189
          context.Output<phi::SelectedRows>(framework::GradVarName("W"));
190

191
      auto *ids_data = ids->data<int64_t>();
192
      int64_t ids_num = ids->numel();
193

M
minqiyang 已提交
194
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
195 196
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
197
      d_table->set_rows(new_rows);
198

199
      auto *d_table_value = d_table->mutable_value();
200
      d_table_value->Resize({ids_num, table_dim[1]});
201 202 203 204 205 206 207 208
      d_table_value->mutable_data<T>(context.GetPlace());
      d_table->set_height(table_dim[0]);

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();

      auto d_output_dims = d_output->dims();
      auto d_output_dims_2d =
209
          phi::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
210 211
      PADDLE_ENFORCE_EQ(d_table_value->dims(),
                        d_output_dims_2d,
212 213 214 215 216
                        platform::errors::InvalidArgument(
                            "ShapeError: The shape of lookup_table@Grad and "
                            "output@Grad should be same. "
                            "But received lookup_table@Grad's shape = [%s], "
                            "output@Grad's shape = [%s].",
217 218
                            d_table_value->dims(),
                            d_output_dims_2d));
219
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
220
    } else {
221 222 223
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
224

225
      auto *ids_data = ids->data<int64_t>();
226

227 228
      int64_t N = table_dim[0];
      int64_t D = table_dim[1];
229

230 231
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
232

233 234
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

235
      for (int64_t i = 0; i < ids->numel(); ++i) {
Q
Qiao Longfei 已提交
236 237 238 239
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
240
          PADDLE_ENFORCE_LT(
241 242
              ids_data[i],
              N,
243 244 245 246
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
247 248
                  N,
                  ids_data[i]));
249
          PADDLE_ENFORCE_GE(
250 251
              ids_data[i],
              0,
252 253 254 255
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input"
                  "value.",
256 257
                  N,
                  ids_data[i]));
258 259 260
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
261
        }
262 263 264 265 266 267 268
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle