lookup_table_op.h 9.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
23
#include "paddle/fluid/framework/selected_rows_utils.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25 26 27 28

namespace paddle {
namespace operators {

C
chengduoZH 已提交
29
using Tensor = framework::Tensor;
F
fengjiayi 已提交
30
using LoDTensor = framework::LoDTensor;
31
using SelectedRows = pten::SelectedRows;
32 33
using DDim = framework::DDim;

Q
qiaolongfei 已提交
34
constexpr int64_t kNoPadding = -1;
35 36

template <typename T>
Y
Yu Yang 已提交
37
class LookupTableKernel : public framework::OpKernel<T> {
38
 public:
39
  void Compute(const framework::ExecutionContext &context) const override {
40 41
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
42
    auto *table_var = context.InputVar("W");
43

H
hong 已提交
44 45 46
    auto id_name = context.InputNames("Ids").front();
    auto embedding_name = context.InputNames("W").front();
    auto out_name = context.OutputNames("Out").front();
Q
Qiao Longfei 已提交
47

48 49
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    bool is_test = context.Attr<bool>("is_test");
Q
Qiao Longfei 已提交
50

51 52
    int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
    int64_t ids_numel = ids_t->numel();
Q
Qiao Longfei 已提交
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];

      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(
              ids[i], row_number,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
82
        }
83 84
      }

85 86
    } else if (table_var->IsType<pten::SelectedRows>()) {
      const auto &table_t = table_var->Get<pten::SelectedRows>();
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
      auto input_data_type = table_t.value().type();
      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0. But received %ld",
                  ids[i]));
          if (is_test) {
            auto id_index = table_t.GetIndexFromId(ids[i]);

            if (id_index != -1) {
105
              if (input_data_type == framework::proto::VarType::INT8 ||
106
                  input_data_type == framework::proto::VarType::INT16 ||
107
                  input_data_type == framework::proto::VarType::BF16) {
108 109 110 111 112 113 114 115 116 117 118
                memcpy(output + i * row_width, table + id_index * row_width,
                       row_width * sizeof(T));
              } else {
                auto blas =
                    math::GetBlas<platform::CPUDeviceContext, T>(context);
                blas.VCOPY(row_width, table + id_index * row_width,
                           output + i * row_width);
              }
            } else {
              memset(output + i * row_width, 0, row_width * sizeof(T));
            }
Q
Qiao Longfei 已提交
119
          } else {
120
            auto id_index = table_t.Index(ids[i]);
121 122
            PADDLE_ENFORCE_GE(
                ids[i], 0,
123 124 125 126
                platform::errors::InvalidArgument(
                    "Variable value (input) of OP(fluid.layers.embedding) "
                    "expected >= 0. But received %ld",
                    ids[i]));
127
            PADDLE_ENFORCE_GE(
128 129 130 131
                id_index, 0,
                platform::errors::InvalidArgument(
                    "the input key should be exists. But received %d.",
                    id_index));
132

133
            if (input_data_type == framework::proto::VarType::INT8 ||
134
                input_data_type == framework::proto::VarType::INT16 ||
135
                input_data_type == framework::proto::VarType::BF16) {
136 137 138 139 140 141 142
              memcpy(output + i * row_width, table + id_index * row_width,
                     row_width * sizeof(T));
            } else {
              auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
              blas.VCOPY(row_width, table + id_index * row_width,
                         output + i * row_width);
            }
Q
Qiao Longfei 已提交
143
          }
144 145
        }
      }
146 147 148 149 150
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
151
class LookupTableGradKernel : public framework::OpKernel<T> {
152
 public:
153
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
154 155 156 157
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
158 159
    } else if (table_var->IsType<pten::SelectedRows>()) {
      auto *table_t = context.Input<pten::SelectedRows>("W");
Q
qiaolongfei 已提交
160 161
      table_dim = table_t->value().dims();
    } else {
162
      PADDLE_THROW(platform::errors::InvalidArgument(
Q
qiaolongfei 已提交
163
          "The parameter W of a LookupTable "
164
          "must be either LoDTensor or SelectedRows"));
Q
qiaolongfei 已提交
165 166
    }

167
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
168
    bool is_sparse = context.Attr<bool>("is_sparse");
169 170
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
171
    if (is_sparse) {
172 173
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
174 175
      auto *d_table =
          context.Output<pten::SelectedRows>(framework::GradVarName("W"));
176

177
      auto *ids_data = ids->data<int64_t>();
178
      int64_t ids_num = ids->numel();
179

M
minqiyang 已提交
180
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
181 182
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
183
      d_table->set_rows(new_rows);
184

185
      auto *d_table_value = d_table->mutable_value();
186
      d_table_value->Resize({ids_num, table_dim[1]});
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
      d_table_value->mutable_data<T>(context.GetPlace());
      d_table->set_height(table_dim[0]);

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();

      auto d_output_dims = d_output->dims();
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
                        platform::errors::InvalidArgument(
                            "ShapeError: The shape of lookup_table@Grad and "
                            "output@Grad should be same. "
                            "But received lookup_table@Grad's shape = [%s], "
                            "output@Grad's shape = [%s].",
                            d_table_value->dims(), d_output_dims_2d));
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
204
    } else {
205 206 207
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
208

209
      auto *ids_data = ids->data<int64_t>();
210

211 212
      int64_t N = table_dim[0];
      int64_t D = table_dim[1];
213

214 215
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
216

217 218
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

219
      for (int64_t i = 0; i < ids->numel(); ++i) {
Q
Qiao Longfei 已提交
220 221 222 223
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
224 225
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
226 227 228 229 230
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N, ids_data[i]));
231 232
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
233 234 235 236 237
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input"
                  "value.",
                  N, ids_data[i]));
238 239 240
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
241
        }
242 243 244 245 246 247 248
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle