squeeze_op.cc 11.5 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/squeeze_op.h"
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
Y
yuyang18 已提交
20
#include "paddle/fluid/framework/op_registry.h"
21 22 23 24

namespace paddle {
namespace operators {

25
class SqueezeOp : public framework::OperatorWithKernel {
26
 public:
27 28 29 30 31 32 33
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of Squeeze operator should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of Squeeze operator should not be null.");
34

Y
yuyang18 已提交
35
    const auto &x_dims = ctx->GetInputDim("X");
36
    // Check input tensor dims (<6) Eigen limit.
37 38 39
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
                      "Invalid dimnesions, the rank of Input(X) "
                      "should be in the range of [1, 6] (Eigen limit).");
40

Y
yuyang18 已提交
41
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
42 43
    for (int a : axes) {
      PADDLE_ENFORCE_LT(a, x_dims.size(),
44 45
                        "The squeeze axis should be less than input "
                        "tensor's rank.");
46 47
    }

48
    auto out_dims = GetOutputShape(axes, x_dims);
49
    ctx->SetOutputDim("Out", out_dims);
50 51 52 53 54
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
55 56 57
  }

  static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
58
                                        const framework::DDim &in_dims) {
59
    size_t num_squeeze_dims = squeeze_dims.size();
60 61 62 63 64 65
    int cnt_squeezed_dims = 0;
    bool should_squeeze[9] = {false};

    // Determines number of dimensions of output tensor after squeeze.
    // Mark and count the dimensions need to be squeezed
    if (num_squeeze_dims == 0) {
66
      for (int idx = 0; idx < in_dims.size(); ++idx) {
67 68 69 70 71 72
        if (in_dims[idx] == 1) {
          should_squeeze[idx] = true;
          ++cnt_squeezed_dims;
        }
      }
    } else {
73
      for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
74 75
        int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
                                            : squeeze_dims[idx];
76
        // Check current index, the upper limit has beed checked in line 36.
77 78
        PADDLE_ENFORCE_GE(current, 0,
                          "Invalid axis, the negative axis is out of range.");
79 80 81 82

        if (!(should_squeeze[current])) {
          ++cnt_squeezed_dims;
        }
83 84 85 86 87 88
        should_squeeze[current] = true;
      }
    }

    // Make output dimensions
    std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
89
    for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
90 91 92 93 94 95 96
      if (!should_squeeze[in_idx]) {
        output_shape[out_idx++] = in_dims[in_idx];
      }
    }

    return framework::make_ddim(output_shape);
  }
97 98 99 100 101 102 103

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
  }
104 105
};

106
class SqueezeGradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
107
 public:
108 109 110 111 112 113 114 115 116 117 118 119 120
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
Y
yuyang18 已提交
121 122 123
  }
};

124 125 126
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
127 128
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
129
    AddAttr<std::vector<int>>("axes",
130
                              "(std::vector<int>). List of integers,"
131
                              " indicating the dimensions to squeeze.")
132
        .SetDefault({});
133
    AddComment(R"DOC(
Y
yuyang18 已提交
134
        Squeeze Operator.
135 136 137 138

        Remove single-dimensional entries from the shape of a tensor.
        Takes a parameter axes with a list of axes to squeeze.
        If axes is not provided, all the single dimensions will be removed from the shape.
139
        If an axis is selected with shape entry not equal to one, an error is raised.
140

Y
yuyang18 已提交
141 142
        Examples:
        Case 1:
143
          Given
Y
yuyang18 已提交
144 145 146 147 148 149 150 151 152
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:
          Given
            X.shape = (1, 3, 1, 5)
153
          and
154
            axes = []
Y
yuyang18 已提交
155 156
          we get:
            Out.shape = (3, 5)
157 158 159 160
    )DOC");
  }
};

161
class Squeeze2Op : public framework::OperatorWithKernel {
162
 public:
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of Squeeze operator should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of Squeeze operator should not be null.");

    const auto &x_dims = ctx->GetInputDim("X");
    // Check input tensor dims (<6) Eigen limit.
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
                      "Invalid dimnesions, the rank of Input(X) "
                      "should be in the range of [1, 6] (Eigen limit).");

    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    for (int a : axes) {
      PADDLE_ENFORCE_LT(a, x_dims.size(),
                        "The squeeze axis should be less than input "
                        "tensor's rank.");
    }

    auto out_dims = SqueezeOp::GetOutputShape(axes, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }

    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
                      "Output(XShape) of Squeeze operator should not be null.");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
201
  }
Y
yuyang18 已提交
202
};
203

204
class Squeeze2GradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
205
 public:
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
        ctx.device_context());
225 226 227
  }
};

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze,
// the XShape is used to carry the shape and lod of X which will be used in
// squeeze_grad, in this way, the framework can reuse the memory of X
// immediately the squeeze2_op is finished.
// Considering compatibility issues, we could not fix squeeze2_op
class Squeeze2OpMaker : public SqueezeOpMaker {
 public:
  void Make() override {
    SqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in SqueezeGradOp.")
        .AsIntermediate();
  }
};

class Squeeze2GradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType("squeeze2_grad");
    grad_op->SetInput("XShape", Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

259 260 261 262 263
DECLARE_INPLACE_OP_INFERER(SequeezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(SequeezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});

264 265 266 267 268 269
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
270
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp);
271 272

REGISTER_OPERATOR(squeeze2, ops::Squeeze2Op, ops::Squeeze2OpMaker,
273
                  ops::Squeeze2GradOpMaker, ops::SequeezeInplaceInferer);
274
REGISTER_OPERATOR(squeeze2_grad, ops::Squeeze2GradOp,
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
                  ops::SequeezeGradInplaceInferer);

REGISTER_OP_CPU_KERNEL(
    squeeze, ops::SqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze_grad,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze2, ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze2_grad,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);