device_context.cc 30.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <memory>
14
#include <set>
15

16
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
17
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
18
#include "paddle/fluid/platform/cuda_device_guard.h"
19
#endif
F
fwenguang 已提交
20 21 22 23
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#include "paddle/fluid/platform/device/mlu/device_context_allocator.h"
#endif
J
jianghaicheng 已提交
24 25 26
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/ipu/ipu_backend.h"
#endif
27
#include "glog/logging.h"
28
#include "paddle/fluid/platform/profiler.h"
29

30 31 32 33 34
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
35
  if (size == 0) {
36 37
    return Alloc(place, size);
  }
38 39

  if (platform::is_gpu_place(place)) {
40
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
59 60
    return Alloc(place, size);
#else
61 62 63
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
F
fwenguang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    auto* default_dev_ctx = static_cast<platform::MLUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::MLUDeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::MLUDeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use MLU device since it's not compiled with MLU,"
        "Please recompile or reinstall Paddle with MLU support."));
81
#endif
82 83 84
  } else {
    return Alloc(place, size);
  }
85 86 87 88 89
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
90 91 92
namespace paddle {
namespace platform {

93
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
94 95 96
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
97 98 99 100

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
101 102
#endif  // PADDLE_WITH_CUDA

103 104 105 106 107 108 109
DeviceType Place2DeviceType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return platform::DeviceType::CPU;
  } else if (platform::is_gpu_place(place)) {
    return platform::DeviceType::CUDA;
  } else if (platform::is_xpu_place(place)) {
    return platform::DeviceType::XPU;
F
fwenguang 已提交
110 111
  } else if (platform::is_mlu_place(place)) {
    return platform::DeviceType::MLU;
112 113 114 115 116 117
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported place %s to convert into platform::DeviceType.", place));
  }
}

D
dzhwinter 已提交
118 119
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
120
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
121
  VLOG(6) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
122 123
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
124 125
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
F
fwenguang 已提交
126 127
        "with WITH_GPU, WITH_XPU, WITH_IPU, WITH_MLU or WITH_ASCEND_CL option "
        "or check "
J
jianghaicheng 已提交
128 129
        "that your train process set the correct device id if you use "
        "Executor.",
G
GaoWei8 已提交
130
        place));
D
dzhwinter 已提交
131
  }
132
  return it->second.get().get();
D
dzhwinter 已提交
133 134
}

135 136 137 138 139 140 141 142 143
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
144
                     return PtrType(new DevCtx(p));
145
                   }));
C
chengduozh 已提交
146 147
}

D
dzhwinter 已提交
148 149
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
150 151 152 153 154
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
155
  std::set<Place> set;
Y
Yu Yang 已提交
156 157 158 159 160
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
161
      platform::CPUPlace place;
162
#ifdef PADDLE_WITH_MKLDNN
163 164
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_,
                                                          place);
165
#else
166 167
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_,
                                                       place);
168
#endif
Y
Yu Yang 已提交
169
    } else if (platform::is_gpu_place(p)) {
170
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
171 172 173
      platform::CUDAPlace place(p.GetDeviceId());
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_,
                                                         place);
D
dzhwinter 已提交
174
#else
G
GaoWei8 已提交
175 176 177
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
178 179
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
180
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
181
      platform::CUDAPinnedPlace place;
182
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
183
          &device_contexts_, place);
C
chengduoZH 已提交
184
#else
G
GaoWei8 已提交
185
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
186 187
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
188 189 190
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
191 192 193
      platform::XPUPlace place(p.GetDeviceId());
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_,
                                                       place);
194 195 196 197
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
F
fwenguang 已提交
198 199 200
#endif
    } else if (platform::is_mlu_place(p)) {
#ifdef PADDLE_WITH_MLU
201 202 203
      platform::MLUPlace place(p.GetDeviceId());
      EmplaceDeviceContext<MLUDeviceContext, MLUPlace>(&device_contexts_,
                                                       place);
F
fwenguang 已提交
204 205 206 207
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("MLUPlace is not supported. Please "
                                          "re-compile with WITH_MLU option."));
J
jianghaicheng 已提交
208 209 210
#endif
    } else if (platform::is_ipu_place(p)) {
#ifdef PADDLE_WITH_IPU
211 212 213
      platform::IPUPlace place(p.GetDeviceId());
      EmplaceDeviceContext<IPUDeviceContext, IPUPlace>(&device_contexts_,
                                                       place);
J
jianghaicheng 已提交
214 215 216 217
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("IPUPlace is not supported. Please "
                                          "re-compile with WITH_IPU option."));
218 219 220
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
221 222 223
      platform::NPUPlace place(p.GetDeviceId());
      EmplaceDeviceContext<NPUDeviceContext, NPUPlace>(&device_contexts_,
                                                       place);
224 225 226 227
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
228 229 230
#endif
    } else if (platform::is_npu_pinned_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
231
      platform::NPUPinnedPlace place;
232
      EmplaceDeviceContext<NPUPinnedDeviceContext, NPUPinnedPlace>(
233
          &device_contexts_, place);
234 235 236 237 238
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPinnedPlace is not supported. Please re-compile with "
          "WITH_ASCEND_CL "
          "option."));
D
dzhwinter 已提交
239 240 241 242 243
#endif
    }
  }
}

244 245 246 247
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
248
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
249 250 251 252 253 254 255
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
256
Place CPUDeviceContext::GetPlace() const { return place_; }
257

J
jianghaicheng 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
#ifdef PADDLE_WITH_IPU
IPUDeviceContext::IPUDeviceContext(IPUPlace place) : place_(place) {
  int id = place.GetDeviceId();
  std::shared_ptr<platform::ipu::IpuBackend> ipu_backend =
      platform::ipu::IpuBackend::GetInstance();
  device_ = ipu_backend->GetDevice(id);
}

Place IPUDeviceContext::GetPlace() const { return place_; }
void IPUDeviceContext::Wait() const {
  /*! \brief  Wait for all operations completion in the stream. */
}

IPUDeviceContext::~IPUDeviceContext() {}

#endif
274
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
275 276 277 278
XPUDeviceContext::XPUDeviceContext() {
  context_ = xpu::create_context();
  xpu_version_ = get_xpu_version(place_.device);
}
279

280
XPUDeviceContext::~XPUDeviceContext() {}
281 282

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
283
  platform::XPUDeviceGuard guard(place.device);
284

285 286
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: "
                          << static_cast<int>(place_.device);
287

288
  context_ = xpu::create_context();
289 290 291
  const int MAX_XPU_NUM = 16;
  static void* l3ptrs[MAX_XPU_NUM] = {nullptr};

292 293 294 295 296
  int l3_size = 13.5 * 1024 * 1024;
  if (std::getenv("XPU_PADDLE_L3_SIZE") != nullptr) {
    l3_size = atoi(std::getenv("XPU_PADDLE_L3_SIZE"));
  }

297 298 299 300 301 302 303 304 305 306 307 308 309
  auto selected_xpus = GetXPUSelectedDevices();
  for (unsigned int i = 0; i < selected_xpus.size(); i++) {
    if (place.device == selected_xpus[i]) {
      if (l3ptrs[place.device] == nullptr) {
        xpu_malloc(static_cast<void**>(&l3ptrs[place.device]), l3_size,
                   XPU_MEM_L3);
      }
      if (l3ptrs[place.device] != nullptr) {
        context_->_l3_mgr.set(l3ptrs[place.device], l3_size);
        VLOG(3) << "xpu place " << place.device << " set l3 size " << l3_size;
      }
      break;
    }
310
  }
311 312 313
}

void XPUDeviceContext::Wait() const {
314
  platform::SetXPUDeviceId(place_.device);
315
  xpu_wait(context_->xpu_stream);
316 317 318 319 320 321 322
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

323 324 325 326 327 328 329
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
330
  platform::GetCurrentNPUContext(&context_);
331 332 333 334 335 336 337
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
338

339
void NPUDeviceContext::Wait() const {
340 341 342
  platform::RecordEvent record_event("NPUDeviceContext/wait");
  VLOG(4) << "NPU context(" << this << ")  Wait";
  stream_->Wait();
343 344 345 346 347 348 349
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

Place NPUDeviceContext::GetPlace() const { return place_; }

aclrtContext NPUDeviceContext::context() const { return context_; }
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

NPUPinnedDeviceContext::NPUPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

NPUPinnedDeviceContext::NPUPinnedDeviceContext(NPUPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* NPUPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place NPUPinnedDeviceContext::GetPlace() const { return place_; }

366 367 368
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
369 370 371 372 373 374 375
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

376
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
377 378 379 380 381
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

382
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
383

384 385 386
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
387
  const cudaDeviceProp& deviceProperties() const override {
388
#endif
Q
init  
qijun 已提交
389 390 391 392
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
393 394 395
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
396 397 398
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
399
    void* retv = buf->ptr();
S
sneaxiy 已提交
400 401 402 403
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
404
    return retv;
Q
init  
qijun 已提交
405 406
  }

S
sneaxiy 已提交
407 408 409 410 411 412
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
413 414 415

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
416
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
417 418 419 420 421 422
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
423
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
424
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
425
#ifdef PADDLE_WITH_HIP
426
      PADDLE_ENFORCE_GPU_SUCCESS(
427 428
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
429
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
init  
qijun 已提交
430
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
431
#endif
Q
init  
qijun 已提交
432 433 434 435 436
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
437
  CUDAPlace place_;
438 439 440 441
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
442
  const cudaDeviceProp* device_prop_;  // not owned;
443
#endif
Q
qijun 已提交
444
  mutable void* scratch_;
Q
init  
qijun 已提交
445
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
446
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
447
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
448 449
};

450 451 452 453 454 455 456 457 458
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

459 460 461 462 463 464 465 466 467 468 469 470
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
471 472
                         const stream::Priority& priority,
                         const stream::StreamFlag& flag) {
473 474
  place_ = place;
  CUDADeviceGuard guard(place_.device);
475
  stream_.reset(new stream::CUDAStream(place, priority, flag));
476 477 478
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
479
#ifndef PADDLE_WITH_HIP
Z
zhangkaihuo 已提交
480
  InitCuSparseContext();
G
Guo Sheng 已提交
481
  InitCuSolverContext();
482
#endif
483 484
}

W
Wilber 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
void CUDAContext::SetStream(gpuStream_t stream) {
  if (stream_->raw_stream() != stream) {
    CUDADeviceGuard guard(place_.device);
    DestoryCuDNNContext();
    DestoryCuBlasContext();
#ifndef PADDLE_WITH_HIP
    DestoryCuSolverContext();
#endif

    stream_->SetStream(stream);

    InitEigenContext();
    InitCuBlasContext();
    InitCuDNNContext();
#ifndef PADDLE_WITH_HIP
    InitCuSolverContext();
#endif
  }
}

505 506 507 508
CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
509
#ifndef PADDLE_WITH_HIP
Z
zhangkaihuo 已提交
510
  DestoryCuSparseContext();
G
Guo Sheng 已提交
511
  DestoryCuSolverContext();
512
#endif
513 514
}

515
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
516
  CUDADeviceGuard guard(place_.device);
517 518 519
  compute_capability_ = GetGPUComputeCapability(place_.device);
  multi_process_ = GetGPUMultiProcessors(place_.device);
  max_threads_per_mp_ = GetGPUMaxThreadsPerMultiProcessor(place_.device);
520
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
521
  max_threads_per_block_ = GetGPUMaxThreadsPerBlock(place_.device);
522

523 524
  driver_version_ = GetGPUDriverVersion(place_.device);
  runtime_version_ = GetGPURuntimeVersion(place_.device);
C
chengduo 已提交
525

526 527
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: "
                          << static_cast<int>(place_.device)
528 529 530
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
531
                          << ", Driver API Version: " << driver_version_ / 1000
532
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
533 534 535
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
536 537
#ifdef PADDLE_WITH_HIP
  size_t version_major, version_minor, version_patch;
538
  PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
539
      &version_major, &version_minor, &version_patch));
540
  LOG_FIRST_N(WARNING, 1) << "device: " << static_cast<int>(place_.device)
541 542 543
                          << ", MIOpen Version: " << version_major << "."
                          << version_minor << "." << version_patch;
#else
544
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
545
  LOG_FIRST_N(WARNING, 1) << "device: " << static_cast<int>(place_.device)
546
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
547
                          << (cudnn_dso_ver % 1000) / 100 << ".";
548
#endif
S
sneaxiy 已提交
549 550
  {
    // Check CUDA/CUDNN version compatiblity
551 552
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
553 554 555
#ifdef PADDLE_WITH_HIP
    auto compile_cuda_version = (HIP_VERSION / 100) * 10 + (HIP_VERSION % 10);
#else
556 557
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
558
#endif
S
sneaxiy 已提交
559 560
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
561
          << "WARNING: device: " << static_cast<int>(place_.device)
S
sneaxiy 已提交
562 563 564 565 566 567 568 569 570
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
571
  default_ctx_.reset(new CUDAContext(place_));
572 573 574 575
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
576
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
577
  if (nccl_comm_) {
578
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
579 580
  }
#endif
581 582
}

L
liaogang 已提交
583
Place CUDADeviceContext::GetPlace() const { return place_; }
584

585
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
586

K
Kexin Zhao 已提交
587
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
588
  return compute_capability_;
K
Kexin Zhao 已提交
589 590
}

591
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
592
  return multi_process_ * max_threads_per_mp_;
593 594
}

595 596 597 598 599 600
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

601
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
602
  return context()->EigenDevice().get();
603 604
}

605
bool CUDADeviceContext::tensor_core_available() const {
606
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
607 608
}

609 610 611 612
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

613 614 615
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
616
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
617
#endif
618 619
  return context()->CudnnHandle();
}
620

621 622 623 624 625
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
#else
626 627 628
cublasHandle_t CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
Z
zhangkaihuo 已提交
629 630 631
cusparseHandle_t CUDADeviceContext::cusparse_handle() const {
  return context()->CusparseHandle()->GetCusparseHandle();
}
632
#endif
633

S
sneaxiy 已提交
634
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
635
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
636
}
637

638
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
639 640 641
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}
642
#endif
G
Guo Sheng 已提交
643

644
gpuStream_t CUDADeviceContext::stream() const { return context()->RawStream(); }
Q
qijun 已提交
645

C
chengduoZH 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
660
#endif
Q
qijun 已提交
661

T
tensor-tang 已提交
662 663
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
664
    : CPUDeviceContext(place), p_blobmap_() {
665
  p_blobmap_.reset(new BlobMap());
666
  p_exec_items_.reset(new ExecShape());
667
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
668 669
}

670
MKLDNNDeviceContextThreadLocals::Body::Body()
671
    : cur_engine(dnnl::engine::kind::cpu, 0), cur_stream(cur_engine) {
672 673 674 675 676 677
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

678 679 680 681 682 683 684 685 686 687 688 689
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
690
  dev_ctx->ResetBlobMap(exec_ptr_);
691 692
}

693 694 695 696 697 698 699 700 701 702
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
703 704
  cur_input_shape_str = input_shape_str;
}
705 706
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
707 708
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
709

710 711
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
712 713 714
  cur_paddle_data_layout = dl;
}

715 716
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
717 718 719
  return cur_paddle_data_layout;
}

720 721 722 723 724 725 726 727 728
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

729
const dnnl::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
730 731 732
  return cur_engine;
}

733
dnnl::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
734 735 736
  return cur_stream;
}

737
void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
738 739 740
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
741 742 743 744 745 746
    // If no specific executor pointer then clear
    // everything. For executor pointer then clear only
    // objects allocated when using given executor
    if (ptr == nullptr) {
      p_blobmap_->clear();
    } else {
747 748 749 750 751
      // Iterate through all shapes and release
      // for each shape and active executor all entries
      // of this executor
      for (auto& s : *p_exec_items_) {
        for (auto& v : (*s.second)[ptr]) {
752
          (v.first)->erase(v.second);
753 754
        }
        s.second->erase(ptr);
755 756
      }
    }
757 758 759 760 761 762
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

763 764
void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
  p_exec_items_->erase(p_exec_items_->begin());
765 766
}

767 768
void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
                                                KeyBlob::iterator it) const {
769
  // Take current input shape from TLS
770 771
  // Take current executor addess from TLS
  // and for this executor's items add the one defined with arguments
772 773 774 775 776 777 778 779 780
  auto key_it = p_exec_items_
                    ->insert(std::make_pair(tls().cur_input_shape_str,
                                            std::make_shared<ExecMap>()))
                    .first;
  (*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

  VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
          << " curr exec size: "
          << (*key_it->second)[tls().get_curr_exec()].size() << "\n";
781 782
}

783 784 785 786
void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
787
}
788

789
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
790
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
791
  BlobMap* pMap = p_blobmap_.get();
792
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
793
  if (map_it == pMap->end()) {
794 795 796
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
797 798 799 800
  }
  return map_it->second->size();
}

801
void MKLDNNDeviceContext::SetBlob(const std::string& name,
802
                                  BlobPtr_t<void> data) const {
803
  BlobMap* pMap = p_blobmap_.get();
804
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
805
  BlobPtr_t<KeyBlob> pBlob = nullptr;
806

807
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
808

809
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
810

811 812
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
813 814 815

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
816
    sBlob = std::make_shared<ShapeBlob>();
817 818
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
819
  } else {
820
    sBlob = map_it->second;
821
  }
T
tensor-tang 已提交
822

823
  // Find KeyBlob for current input shape
824
  auto key_it = sBlob->find(tls().cur_input_shape_str);
825

826
  if (key_it == sBlob->end()) {
827 828
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
829 830
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
831
        sBlob->size() &&
832
        (sBlob->size() >=
833
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
834 835 836 837
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
      RemoveShapeEntriesWithExecutor();
838
    }
839
    pBlob = std::make_shared<KeyBlob>();
840
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
841
  } else {
842
    pBlob = key_it->second;
843 844
  }

845
  // Find Blob via name
846 847 848 849
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    auto el =
        pBlob->insert(std::make_pair(name, data));  //  (*pBlob)[name] = data;
850 851 852
    // Register new element in per executor map
    // to have easily erased when executor terminated
    LinkEntryWithExecutor(pBlob, el.first);
853 854 855
  } else {
    blob_it->second = data;  // set data to existing blob
  }
856
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
857
  // lock will be automatically released when out of scope
858
  return;
T
tensor-tang 已提交
859 860
}

861
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
862 863 864
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
865
      num_entries += (l2.second)->size();
866 867 868 869 870
    }
  }
  return num_entries;
}

871 872 873 874 875 876 877 878 879
// TODO(jczaja): Replace with C++20 equivalents when applicable
#ifdef _WIN32
#define likely(expr) (expr)
#define unlikely(expr) (expr)
#else
#define likely(expr) (__builtin_expect(!!(expr), 1))
#define unlikely(expr) (__builtin_expect(!!(expr), 0))
#endif

880
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
881
    const std::string& name) const {
882
  BlobMap* pMap = p_blobmap_.get();
883
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
884
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
885

886
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
887

888
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
889

890 891
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
892 893 894 895
  // (jczaja): After first iteration of model's execution we
  // should have all elements cached (mostly) so failures are unlikely (less
  // likely for dynamic shapes)
  if (unlikely(map_it == pMap->end())) {
896
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
897 898 899 900 901
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
902
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
903
  if (unlikely(sBlob_it == sBlob->end())) {
904
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
905 906 907 908
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
909 910

  // Find Blob via name
911
  auto key_it = pBlob->find(name);
912

913
  if (unlikely(key_it == pBlob->end())) {
914
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
915 916
    return nullptr;
  }
917

918
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
919 920
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
921 922 923
}

#endif
Q
qijun 已提交
924
}  // namespace platform
Q
qijun 已提交
925
}  // namespace paddle