device_context.cc 30.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <memory>
14
#include <set>
15

16
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
17
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
18
#include "paddle/fluid/platform/cuda_device_guard.h"
19
#endif
F
fwenguang 已提交
20 21 22 23
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/device_context.h"
#include "paddle/fluid/platform/device/mlu/device_context_allocator.h"
#endif
J
jianghaicheng 已提交
24 25 26
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/ipu/ipu_backend.h"
#endif
27
#include "glog/logging.h"
28
#include "paddle/fluid/platform/profiler.h"
29

30 31 32 33 34
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
35
  if (size == 0) {
36 37
    return Alloc(place, size);
  }
38 39

  if (platform::is_gpu_place(place)) {
40
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
59 60
    return Alloc(place, size);
#else
61 62 63
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
F
fwenguang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    auto* default_dev_ctx = static_cast<platform::MLUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::MLUDeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::MLUDeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use MLU device since it's not compiled with MLU,"
        "Please recompile or reinstall Paddle with MLU support."));
81
#endif
82 83 84
  } else {
    return Alloc(place, size);
  }
85 86 87 88 89
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
90 91 92
namespace paddle {
namespace platform {

93
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
94 95 96
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
97 98 99 100

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
101 102
#endif  // PADDLE_WITH_CUDA

103 104 105 106 107 108 109
DeviceType Place2DeviceType(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return platform::DeviceType::CPU;
  } else if (platform::is_gpu_place(place)) {
    return platform::DeviceType::CUDA;
  } else if (platform::is_xpu_place(place)) {
    return platform::DeviceType::XPU;
F
fwenguang 已提交
110 111
  } else if (platform::is_mlu_place(place)) {
    return platform::DeviceType::MLU;
112 113 114 115 116 117
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported place %s to convert into platform::DeviceType.", place));
  }
}

D
dzhwinter 已提交
118 119
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
120
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
121
  VLOG(6) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
122 123
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
124 125
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
F
fwenguang 已提交
126 127
        "with WITH_GPU, WITH_XPU, WITH_IPU, WITH_MLU or WITH_ASCEND_CL option "
        "or check "
J
jianghaicheng 已提交
128 129
        "that your train process set the correct device id if you use "
        "Executor.",
G
GaoWei8 已提交
130
        place));
D
dzhwinter 已提交
131
  }
132
  return it->second.get().get();
D
dzhwinter 已提交
133 134
}

135 136 137 138 139 140 141 142 143
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
144
                     return PtrType(new DevCtx(p));
145
                   }));
C
chengduozh 已提交
146 147
}

D
dzhwinter 已提交
148 149
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
150 151 152 153 154
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
155
  std::set<Place> set;
Y
Yu Yang 已提交
156 157 158 159 160
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
161
      platform::CPUPlace place;
162
#ifdef PADDLE_WITH_MKLDNN
163 164
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_,
                                                          place);
165
#else
166 167
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_,
                                                       place);
168
#endif
Y
Yu Yang 已提交
169
    } else if (platform::is_gpu_place(p)) {
170
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
171 172 173
      platform::CUDAPlace place(p.GetDeviceId());
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_,
                                                         place);
D
dzhwinter 已提交
174
#else
G
GaoWei8 已提交
175 176 177
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
178 179
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
180
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
181
      platform::CUDAPinnedPlace place;
182
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
183
          &device_contexts_, place);
C
chengduoZH 已提交
184
#else
G
GaoWei8 已提交
185
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
186 187
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
188 189 190
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
191 192 193
      platform::XPUPlace place(p.GetDeviceId());
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_,
                                                       place);
194 195 196 197
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
F
fwenguang 已提交
198 199 200
#endif
    } else if (platform::is_mlu_place(p)) {
#ifdef PADDLE_WITH_MLU
201 202 203
      platform::MLUPlace place(p.GetDeviceId());
      EmplaceDeviceContext<MLUDeviceContext, MLUPlace>(&device_contexts_,
                                                       place);
F
fwenguang 已提交
204 205 206 207
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("MLUPlace is not supported. Please "
                                          "re-compile with WITH_MLU option."));
J
jianghaicheng 已提交
208 209 210
#endif
    } else if (platform::is_ipu_place(p)) {
#ifdef PADDLE_WITH_IPU
211 212 213
      platform::IPUPlace place(p.GetDeviceId());
      EmplaceDeviceContext<IPUDeviceContext, IPUPlace>(&device_contexts_,
                                                       place);
J
jianghaicheng 已提交
214 215 216 217
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("IPUPlace is not supported. Please "
                                          "re-compile with WITH_IPU option."));
218 219 220
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
221 222 223
      platform::NPUPlace place(p.GetDeviceId());
      EmplaceDeviceContext<NPUDeviceContext, NPUPlace>(&device_contexts_,
                                                       place);
224 225 226 227
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
228 229 230
#endif
    } else if (platform::is_npu_pinned_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
231
      platform::NPUPinnedPlace place;
232
      EmplaceDeviceContext<NPUPinnedDeviceContext, NPUPinnedPlace>(
233
          &device_contexts_, place);
234 235 236 237 238
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPinnedPlace is not supported. Please re-compile with "
          "WITH_ASCEND_CL "
          "option."));
D
dzhwinter 已提交
239 240 241 242 243
#endif
    }
  }
}

244 245 246 247
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
248
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
249 250 251 252 253 254 255
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
256
Place CPUDeviceContext::GetPlace() const { return place_; }
257

J
jianghaicheng 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
#ifdef PADDLE_WITH_IPU
IPUDeviceContext::IPUDeviceContext(IPUPlace place) : place_(place) {
  int id = place.GetDeviceId();
  std::shared_ptr<platform::ipu::IpuBackend> ipu_backend =
      platform::ipu::IpuBackend::GetInstance();
  device_ = ipu_backend->GetDevice(id);
}

Place IPUDeviceContext::GetPlace() const { return place_; }
void IPUDeviceContext::Wait() const {
  /*! \brief  Wait for all operations completion in the stream. */
}

IPUDeviceContext::~IPUDeviceContext() {}

#endif
274
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
275 276 277 278
XPUDeviceContext::XPUDeviceContext() {
  context_ = xpu::create_context();
  xpu_version_ = get_xpu_version(place_.device);
}
279

280
XPUDeviceContext::~XPUDeviceContext() {}
281 282

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
283
  platform::XPUDeviceGuard guard(place.device);
284 285 286

  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: " << place_.device;

287
  context_ = xpu::create_context();
288 289 290
  const int MAX_XPU_NUM = 16;
  static void* l3ptrs[MAX_XPU_NUM] = {nullptr};

291 292 293 294 295
  int l3_size = 13.5 * 1024 * 1024;
  if (std::getenv("XPU_PADDLE_L3_SIZE") != nullptr) {
    l3_size = atoi(std::getenv("XPU_PADDLE_L3_SIZE"));
  }

296 297 298 299 300 301 302 303 304 305 306 307 308
  auto selected_xpus = GetXPUSelectedDevices();
  for (unsigned int i = 0; i < selected_xpus.size(); i++) {
    if (place.device == selected_xpus[i]) {
      if (l3ptrs[place.device] == nullptr) {
        xpu_malloc(static_cast<void**>(&l3ptrs[place.device]), l3_size,
                   XPU_MEM_L3);
      }
      if (l3ptrs[place.device] != nullptr) {
        context_->_l3_mgr.set(l3ptrs[place.device], l3_size);
        VLOG(3) << "xpu place " << place.device << " set l3 size " << l3_size;
      }
      break;
    }
309
  }
310 311 312
}

void XPUDeviceContext::Wait() const {
313
  platform::SetXPUDeviceId(place_.device);
314
  xpu_wait(context_->xpu_stream);
315 316 317 318 319 320 321
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

322 323 324 325 326 327 328
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
329
  platform::GetCurrentNPUContext(&context_);
330 331 332 333 334 335 336
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
337

338
void NPUDeviceContext::Wait() const {
339 340 341
  platform::RecordEvent record_event("NPUDeviceContext/wait");
  VLOG(4) << "NPU context(" << this << ")  Wait";
  stream_->Wait();
342 343 344 345 346 347 348
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

Place NPUDeviceContext::GetPlace() const { return place_; }

aclrtContext NPUDeviceContext::context() const { return context_; }
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

NPUPinnedDeviceContext::NPUPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

NPUPinnedDeviceContext::NPUPinnedDeviceContext(NPUPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* NPUPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place NPUPinnedDeviceContext::GetPlace() const { return place_; }

365 366 367
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
368 369 370 371 372 373 374
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

375
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
376 377 378 379 380
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

381
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
382

383 384 385
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
386
  const cudaDeviceProp& deviceProperties() const override {
387
#endif
Q
init  
qijun 已提交
388 389 390 391
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
392 393 394
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
395 396 397
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
398
    void* retv = buf->ptr();
S
sneaxiy 已提交
399 400 401 402
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
403
    return retv;
Q
init  
qijun 已提交
404 405
  }

S
sneaxiy 已提交
406 407 408 409 410 411
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
412 413 414

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
415
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
416 417 418 419 420 421
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
422
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
423
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
424
#ifdef PADDLE_WITH_HIP
425
      PADDLE_ENFORCE_GPU_SUCCESS(
426 427
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
428
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
init  
qijun 已提交
429
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
430
#endif
Q
init  
qijun 已提交
431 432 433 434 435
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
436
  CUDAPlace place_;
437 438 439 440
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
441
  const cudaDeviceProp* device_prop_;  // not owned;
442
#endif
Q
qijun 已提交
443
  mutable void* scratch_;
Q
init  
qijun 已提交
444
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
445
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
446
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
447 448
};

449 450 451 452 453 454 455 456 457
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

458 459 460 461 462 463 464 465 466 467 468 469
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
470 471
                         const stream::Priority& priority,
                         const stream::StreamFlag& flag) {
472 473
  place_ = place;
  CUDADeviceGuard guard(place_.device);
474
  stream_.reset(new stream::CUDAStream(place, priority, flag));
475 476 477
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
478
#ifndef PADDLE_WITH_HIP
Z
zhangkaihuo 已提交
479
  InitCuSparseContext();
G
Guo Sheng 已提交
480
  InitCuSolverContext();
481
#endif
482 483
}

W
Wilber 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
void CUDAContext::SetStream(gpuStream_t stream) {
  if (stream_->raw_stream() != stream) {
    CUDADeviceGuard guard(place_.device);
    DestoryCuDNNContext();
    DestoryCuBlasContext();
#ifndef PADDLE_WITH_HIP
    DestoryCuSolverContext();
#endif

    stream_->SetStream(stream);

    InitEigenContext();
    InitCuBlasContext();
    InitCuDNNContext();
#ifndef PADDLE_WITH_HIP
    InitCuSolverContext();
#endif
  }
}

504 505 506 507
CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
508
#ifndef PADDLE_WITH_HIP
Z
zhangkaihuo 已提交
509
  DestoryCuSparseContext();
G
Guo Sheng 已提交
510
  DestoryCuSolverContext();
511
#endif
512 513
}

514
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
515
  CUDADeviceGuard guard(place_.device);
516 517 518
  compute_capability_ = GetGPUComputeCapability(place_.device);
  multi_process_ = GetGPUMultiProcessors(place_.device);
  max_threads_per_mp_ = GetGPUMaxThreadsPerMultiProcessor(place_.device);
519
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
520
  max_threads_per_block_ = GetGPUMaxThreadsPerBlock(place_.device);
521

522 523
  driver_version_ = GetGPUDriverVersion(place_.device);
  runtime_version_ = GetGPURuntimeVersion(place_.device);
C
chengduo 已提交
524

525
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
526 527 528
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
529
                          << ", Driver API Version: " << driver_version_ / 1000
530
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
531 532 533
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
534 535
#ifdef PADDLE_WITH_HIP
  size_t version_major, version_minor, version_patch;
536
  PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
537 538 539 540 541
      &version_major, &version_minor, &version_patch));
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", MIOpen Version: " << version_major << "."
                          << version_minor << "." << version_patch;
#else
542 543 544
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
545
                          << (cudnn_dso_ver % 1000) / 100 << ".";
546
#endif
S
sneaxiy 已提交
547 548
  {
    // Check CUDA/CUDNN version compatiblity
549 550
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
551 552 553
#ifdef PADDLE_WITH_HIP
    auto compile_cuda_version = (HIP_VERSION / 100) * 10 + (HIP_VERSION % 10);
#else
554 555
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
556
#endif
S
sneaxiy 已提交
557 558 559 560 561 562 563 564 565 566 567 568
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
569
  default_ctx_.reset(new CUDAContext(place_));
570 571 572 573
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
574
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
575
  if (nccl_comm_) {
576
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
577 578
  }
#endif
579 580
}

L
liaogang 已提交
581
Place CUDADeviceContext::GetPlace() const { return place_; }
582

583
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
584

K
Kexin Zhao 已提交
585
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
586
  return compute_capability_;
K
Kexin Zhao 已提交
587 588
}

589
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
590
  return multi_process_ * max_threads_per_mp_;
591 592
}

593 594 595 596 597 598
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

599
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
600
  return context()->EigenDevice().get();
601 602
}

603
bool CUDADeviceContext::tensor_core_available() const {
604
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
605 606
}

607 608 609 610
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

611 612 613
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
614
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
615
#endif
616 617
  return context()->CudnnHandle();
}
618

619 620 621 622 623
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
#else
624 625 626
cublasHandle_t CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
Z
zhangkaihuo 已提交
627 628 629
cusparseHandle_t CUDADeviceContext::cusparse_handle() const {
  return context()->CusparseHandle()->GetCusparseHandle();
}
630
#endif
631

S
sneaxiy 已提交
632
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
633
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
634
}
635

636
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
637 638 639
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}
640
#endif
G
Guo Sheng 已提交
641

642
gpuStream_t CUDADeviceContext::stream() const { return context()->RawStream(); }
Q
qijun 已提交
643

C
chengduoZH 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
658
#endif
Q
qijun 已提交
659

T
tensor-tang 已提交
660 661
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
662
    : CPUDeviceContext(place), p_blobmap_() {
663
  p_blobmap_.reset(new BlobMap());
664
  p_exec_items_.reset(new ExecShape());
665
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
666 667
}

668
MKLDNNDeviceContextThreadLocals::Body::Body()
669
    : cur_engine(dnnl::engine::kind::cpu, 0), cur_stream(cur_engine) {
670 671 672 673 674 675
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

676 677 678 679 680 681 682 683 684 685 686 687
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
688
  dev_ctx->ResetBlobMap(exec_ptr_);
689 690
}

691 692 693 694 695 696 697 698 699 700
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
701 702
  cur_input_shape_str = input_shape_str;
}
703 704
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
705 706
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
707

708 709
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
710 711 712
  cur_paddle_data_layout = dl;
}

713 714
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
715 716 717
  return cur_paddle_data_layout;
}

718 719 720 721 722 723 724 725 726
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

727
const dnnl::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
728 729 730
  return cur_engine;
}

731
dnnl::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
732 733 734
  return cur_stream;
}

735
void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
736 737 738
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
739 740 741 742 743 744
    // If no specific executor pointer then clear
    // everything. For executor pointer then clear only
    // objects allocated when using given executor
    if (ptr == nullptr) {
      p_blobmap_->clear();
    } else {
745 746 747 748 749
      // Iterate through all shapes and release
      // for each shape and active executor all entries
      // of this executor
      for (auto& s : *p_exec_items_) {
        for (auto& v : (*s.second)[ptr]) {
750
          (v.first)->erase(v.second);
751 752
        }
        s.second->erase(ptr);
753 754
      }
    }
755 756 757 758 759 760
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

761 762
void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
  p_exec_items_->erase(p_exec_items_->begin());
763 764
}

765 766
void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
                                                KeyBlob::iterator it) const {
767
  // Take current input shape from TLS
768 769
  // Take current executor addess from TLS
  // and for this executor's items add the one defined with arguments
770 771 772 773 774 775 776 777 778
  auto key_it = p_exec_items_
                    ->insert(std::make_pair(tls().cur_input_shape_str,
                                            std::make_shared<ExecMap>()))
                    .first;
  (*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

  VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
          << " curr exec size: "
          << (*key_it->second)[tls().get_curr_exec()].size() << "\n";
779 780
}

781 782 783 784
void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
785
}
786

787
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
788
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
789
  BlobMap* pMap = p_blobmap_.get();
790
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
791
  if (map_it == pMap->end()) {
792 793 794
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
795 796 797 798
  }
  return map_it->second->size();
}

799
void MKLDNNDeviceContext::SetBlob(const std::string& name,
800
                                  BlobPtr_t<void> data) const {
801
  BlobMap* pMap = p_blobmap_.get();
802
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
803
  BlobPtr_t<KeyBlob> pBlob = nullptr;
804

805
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
806

807
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
808

809 810
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
811 812 813

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
814
    sBlob = std::make_shared<ShapeBlob>();
815 816
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
817
  } else {
818
    sBlob = map_it->second;
819
  }
T
tensor-tang 已提交
820

821
  // Find KeyBlob for current input shape
822
  auto key_it = sBlob->find(tls().cur_input_shape_str);
823

824
  if (key_it == sBlob->end()) {
825 826
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
827 828
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
829
        sBlob->size() &&
830
        (sBlob->size() >=
831
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
832 833 834 835
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
      RemoveShapeEntriesWithExecutor();
836
    }
837
    pBlob = std::make_shared<KeyBlob>();
838
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
839
  } else {
840
    pBlob = key_it->second;
841 842
  }

843
  // Find Blob via name
844 845 846 847
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    auto el =
        pBlob->insert(std::make_pair(name, data));  //  (*pBlob)[name] = data;
848 849 850
    // Register new element in per executor map
    // to have easily erased when executor terminated
    LinkEntryWithExecutor(pBlob, el.first);
851 852 853
  } else {
    blob_it->second = data;  // set data to existing blob
  }
854
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
855
  // lock will be automatically released when out of scope
856
  return;
T
tensor-tang 已提交
857 858
}

859
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
860 861 862
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
863
      num_entries += (l2.second)->size();
864 865 866 867 868
    }
  }
  return num_entries;
}

869 870 871 872 873 874 875 876 877
// TODO(jczaja): Replace with C++20 equivalents when applicable
#ifdef _WIN32
#define likely(expr) (expr)
#define unlikely(expr) (expr)
#else
#define likely(expr) (__builtin_expect(!!(expr), 1))
#define unlikely(expr) (__builtin_expect(!!(expr), 0))
#endif

878
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
879
    const std::string& name) const {
880
  BlobMap* pMap = p_blobmap_.get();
881
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
882
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
883

884
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
885

886
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
887

888 889
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
890 891 892 893
  // (jczaja): After first iteration of model's execution we
  // should have all elements cached (mostly) so failures are unlikely (less
  // likely for dynamic shapes)
  if (unlikely(map_it == pMap->end())) {
894
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
895 896 897 898 899
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
900
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
901
  if (unlikely(sBlob_it == sBlob->end())) {
902
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
903 904 905 906
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
907 908

  // Find Blob via name
909
  auto key_it = pBlob->find(name);
910

911
  if (unlikely(key_it == pBlob->end())) {
912
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
913 914
    return nullptr;
  }
915

916
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
917 918
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
919 920 921
}

#endif
Q
qijun 已提交
922
}  // namespace platform
Q
qijun 已提交
923
}  // namespace paddle