multi_devices_graph_builder.cc 17.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

C
chengduoZH 已提交
20
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
22
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
23
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
25
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Fix bug  
yuyang18 已提交
26
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
28 29 30 31

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
32

Y
Yancey1989 已提交
33 34 35 36
DEFINE_string(ssa_graph_path, "/tmp/ssa_graph.dot",
              "the ssa graph path only print with GLOG_v=10,"
              "default /tmp/graph.dot");

Y
Yu Yang 已提交
37 38 39
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
40 41

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
42 43 44 45
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
46
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
47
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
48 49 50
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
51
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
52
      strategy_(strategy) {
Y
Yu Yang 已提交
53 54 55 56 57
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
58
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
59 60
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
61
      local_scopes_(local_scopes),
Y
yuyang18 已提交
62
      strategy_(strategy) {
Y
Yu Yang 已提交
63
#endif
Y
Yu Yang 已提交
64 65 66 67 68
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
69 70
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
71 72
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
73
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
74 75
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
76

Y
Yu Yang 已提交
77 78 79
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
80 81 82
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
83 84
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
85 86
  }
}
Y
fix pe  
Yancey1989 已提交
87 88 89 90

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
91 92
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
Y
fix pe  
Yancey1989 已提交
93
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
94 95 96
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
    if (op->Type() == "send_vars") {
Y
fix pe  
Yancey1989 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
110 111 112
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
126 127 128
    return false;
  }

Y
Yu Yang 已提交
129 130 131 132
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
133
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
134
    for (auto &var : opvars) {
Y
Yancey1989 已提交
135 136 137
      // a variable name with the suffix `.block` means it's a splited
      // variable by (DistributeTranspiler)
      // [python/paddle/fluid/transpiler/distribute_transpiler.py]
T
typhoonzero 已提交
138
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
139
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
140
        return true;
T
typhoonzero 已提交
141 142
      }
    }
Y
Yu Yang 已提交
143
    return false;
T
typhoonzero 已提交
144 145
  };

Y
Yancey1989 已提交
146 147
  return checker(op.OutputArgumentNames(), send_vars) ||
         checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
148 149
}

Y
Yu Yang 已提交
150 151
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
chengduoZH 已提交
152
  std::unordered_map<std::string, VarDesc *> all_vars;
C
fix ci  
chengduoZH 已提交
153
  for (auto *var : program.Block(0).AllVars()) {
C
chengduoZH 已提交
154
    all_vars[var->Name()] = var;
C
fix ci  
chengduoZH 已提交
155
  }
C
chengduoZH 已提交
156

Y
Yu Yang 已提交
157
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
158
  SSAGraph &result = *graph;
C
chengduoZH 已提交
159
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
160 161 162 163 164

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
165

Y
fix pe  
Yancey1989 已提交
166 167 168 169
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
170

C
chengduoZH 已提交
171 172 173 174 175
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  size_t cur_device_id = 0;
  std::vector<int64_t> balance_grads(places_.size(), 0);

  auto get_appropriate_dev = [&](std::string &g_name) -> size_t {
    auto var_desc = all_vars.at(g_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GE(numel, 0);
    auto smallest =
        std::min_element(std::begin(balance_grads), std::end(balance_grads));
    size_t dev_id =
        static_cast<size_t>(std::distance(std::begin(balance_grads), smallest));
    balance_grads[dev_id] += numel;
    return dev_id;
  };

Y
Yu Yang 已提交
193 194
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
195 196 197
    if (boost::get<int>(
            op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
198
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
199
      // always use the first device
Y
Yancey1989 已提交
200
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
201
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
202
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
203
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
204
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
205 206
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
207 208
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
209
      is_forwarding = false;
Y
Yu Yang 已提交
210
    } else {
C
chengduoZH 已提交
211 212 213 214 215 216 217 218 219
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
220
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
221
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
222
        // broadcast, and each gradient is only broadcast once.
Y
yuyang18 已提交
223 224 225
        if (static_cast<bool>(boost::get<int>(op->GetAttr(
                                  OpProtoAndCheckerMaker::OpRoleAttrName())) &
                              static_cast<int>(OpRole::kBackward))) {
Y
yuyang18 已提交
226 227 228 229 230 231 232
          try {
            auto backward_vars =
                boost::get<std::vector<std::string>>(op->GetNullableAttr(
                    OpProtoAndCheckerMaker::OpRoleVarAttrName()));

            PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

Y
Fix bug  
yuyang18 已提交
233
            for (size_t i = 0; i < backward_vars.size(); i += 2) {
Y
yuyang18 已提交
234 235
              auto &p_name = backward_vars[i];
              auto &g_name = backward_vars[i + 1];
Y
yuyang18 已提交
236 237
              VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;

Y
yuyang18 已提交
238 239
              switch (strategy_.reduce_) {
                case BuildStrategy::ReduceStrategy::kReduce:
C
chengduoZH 已提交
240
                  cur_device_id = get_appropriate_dev(g_name);
Y
yuyang18 已提交
241 242 243 244 245
                  CreateReduceOp(&result, g_name, cur_device_id);
                  var_name_on_devices[cur_device_id].emplace(g_name);
                  bcast_var_name_set[cur_device_id].emplace(p_name);
                  break;
                case BuildStrategy::ReduceStrategy::kAllReduce:
C
chengduoZH 已提交
246
                  if (IsSparseGradient(all_vars, g_name)) {
Y
yuyang18 已提交
247 248 249 250 251 252 253
                    CreateReduceOp(&result, g_name, 0);
                    CreateBroadcastOp(&result, g_name, 0);
                  } else {
                    InsertNCCLAllReduceOp(&result, g_name);
                  }
                  break;
              }
C
chengduoZH 已提交
254
            }
Y
yuyang18 已提交
255
          } catch (boost::bad_get e) {
Y
Yu Yang 已提交
256 257 258 259 260 261
          }
        }
      }
    }
  }

C
chengduoZH 已提交
262 263 264 265 266 267 268
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
269 270 271 272 273
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
274

Y
Yu Yang 已提交
275 276 277 278 279
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
280
  if (VLOG_IS_ON(10)) {
Y
Yancey1989 已提交
281
    std::ofstream fout(FLAGS_ssa_graph_path);
Y
Yancey1989 已提交
282
    PrintGraphviz(*graph, fout);
Y
Yu Yang 已提交
283 284
  }

Y
Yu Yang 已提交
285
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
286 287
}

C
fix ci  
chengduoZH 已提交
288
bool MultiDevSSAGraphBuilder::IsSparseGradient(
C
chengduoZH 已提交
289
    const std::unordered_map<std::string, VarDesc *> &all_vars,
C
fix ci  
chengduoZH 已提交
290
    const std::string &og) const {
C
chengduoZH 已提交
291 292
  PADDLE_ENFORCE(all_vars.count(og) != 0);
  if (all_vars.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
293 294 295
    return true;
  }
  return false;
296 297
}

C
chengduoZH 已提交
298 299
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
300
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
301 302 303 304 305 306 307
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
308
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
309 310 311
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
312
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
332 333 334 335 336 337 338 339 340 341
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
342 343
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
367 368 369
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
370
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
414 415 416
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
417 418 419
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
420
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
421 422 423
  }
}

C
chengduoZH 已提交
424 425 426
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
454 455
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
456
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
457
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
458 459 460
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
461
      op->AddInput(dep_var);
Y
Yancey1989 已提交
462 463 464 465
    }
  }
}

Y
Yancey1989 已提交
466 467 468 469 470 471 472 473
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
                                                const OpDesc &op) const {
  CreateComputationalOp(result, op, 0);
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

Y
Yancey1989 已提交
474 475
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
Y
Yu Yang 已提交
476 477
  auto &p = places_[0];
  auto *s = local_scopes_[0];
Y
Yancey1989 已提交
478
  result->ops_.emplace_back(new RPCOpHandle(op, s, p, op.Type()));
Y
fix pe  
Yancey1989 已提交
479

Y
Yancey1989 已提交
480
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
481
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
482
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
483
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
484
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
485
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
486
  } else if (op.Type() == "send_vars") {
Y
Yancey1989 已提交
487 488 489
    // do nothing
  } else {
    PADDLE_THROW(
Y
Yancey1989 已提交
490
        "rpc op should be in ["
Y
Yancey1989 已提交
491 492 493
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yancey1989 已提交
494 495
  // TODO(Yancey1989): schedule rpc op on different place may
  // increate throughput
Y
Yu Yang 已提交
496
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
497 498 499
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
Y
yuyang18 已提交
500 501
  return boost::get<int>(
             op.GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
502 503 504
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
505
}
Y
Yu Yang 已提交
506 507 508
}  // namespace details
}  // namespace framework
}  // namespace paddle