op_test.py 61.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import time
24
import itertools
Y
Yu Yang 已提交
25
import collections
M
minqiyang 已提交
26
from collections import defaultdict
27 28 29

import paddle.fluid as fluid
import paddle.fluid.core as core
30 31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
33
from paddle.fluid.framework import Program, OpProtoHolder, Variable
34
from testsuite import create_op, set_input, append_input_output, append_loss_ops
35
from paddle.fluid import unique_name
J
juncaipeng 已提交
36
from white_list import op_accuracy_white_list
37 38


39 40 41 42 43 44 45 46
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


47 48 49 50
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
51
    for i in six.moves.xrange(len(prob)):
52 53 54 55
        prob[i] /= prob_sum[i]
    return prob


56 57
def get_numeric_gradient(place,
                         scope,
58 59 60
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
61
                         output_names,
62
                         delta=0.005,
C
chengduo 已提交
63
                         in_place=False):
Y
Yu Yang 已提交
64
    # FIXME: change this method by compile time concepts
65
    set_input(scope, op, inputs, place)
66 67

    def product(dim):
M
minqiyang 已提交
68
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
69 70

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
71 72
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
73
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
74
        tensor_to_check_dtype = np.float32
75
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
76
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
77 78 79 80
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
81 82 83 84
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
85 86 87 88 89 90 91 92 93
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).astype(
                    tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

94 95 96
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
97 98 99 100 101
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
102
            return tensor._get_float_element(i)
103
        else:
Y
yuyang18 已提交
104
            return tensor._get_double_element(i)
105 106

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
107 108 109 110 111
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
112
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
113 114
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
115
            tensor._set_float_element(i, e)
116
        else:
Y
yuyang18 已提交
117
            tensor._set_double_element(i, e)
118

119 120
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
121
    for i in six.moves.xrange(tensor_size):
122
        if in_place:
123
            set_input(scope, op, inputs, place)
124 125

        # get one input element throw it's index i.
126
        origin = __get_elem__(tensor_to_check, i)
127 128
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
129
        __set_elem__(tensor_to_check, i, x_pos)
130 131 132
        y_pos = get_output()

        if in_place:
133
            set_input(scope, op, inputs, place)
134 135

        x_neg = origin - delta
136
        __set_elem__(tensor_to_check, i, x_neg)
137 138
        y_neg = get_output()

139
        __set_elem__(tensor_to_check, i, origin)
140 141
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
142
    return gradient_flat.reshape(tensor_to_check.shape())
143 144


J
juncaipeng 已提交
145
class OpTestBase(unittest.TestCase):
146 147 148 149 150
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
151 152 153
        cls.call_once = False
        cls.dtype = "float32"
        cls.outputs = {}
154 155 156 157

        np.random.seed(123)
        random.seed(124)

158 159
        cls._use_system_allocator = _set_use_system_allocator(True)

160 161
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
162
        """Restore random seeds"""
163 164 165
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

166 167
        _set_use_system_allocator(cls._use_system_allocator)

168 169 170 171 172 173
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
174 175 176 177
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
178 179 180
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        dtype_set = set()
        infer_dtype(inputs, dtype_set)
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.int16),
            np.dtype(np.int8)
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in dtype_set:
                self.dtype = dtype
                break
215

Y
Yang Yang(Tony) 已提交
216 217 218 219 220 221
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
222
                    if isinstance(np_value, tuple):
223
                        tensor.set(np_value[0], place)
224
                        tensor.set_recursive_sequence_lengths(np_value[1])
225
                    else:
226
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
227 228 229 230
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
231
                    tensor.set(self.inputs[var_name][0], place)
232 233
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
234
                else:
235
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
236 237 238 239
                feed_map[var_name] = tensor

        return feed_map

240
    def _append_ops(self, block):
J
juncaipeng 已提交
241
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yang Yang(Tony) 已提交
242
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
243 244 245 246 247 248
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
249 250 251 252 253 254 255 256 257

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
258 259 260 261 262
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
263
        # infer variable type and infer shape in compile-time 
Q
QI JUN 已提交
264 265
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
266

267 268
        return op

269 270
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
271
        for name, value in six.iteritems(numpy_inputs):
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
291 292 293 294
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
295
            v = fluid.dygraph.base.to_variable(value=data)
296
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
297 298
            return v
        else:
L
lujun 已提交
299
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
317
                    v.value().get_tensor().set_recursive_sequence_lengths(
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
379
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
380
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
381
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
382 383
            block = fluid.default_main_program().global_block()

384
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
385

386 387 388
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
389 390

            # prepare output variable
391 392 393 394 395 396 397 398 399
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
400 401 402 403
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
404
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
405
            return outputs
406

407 408 409 410 411 412
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
413
                     for_inplace_test=None):
414 415
        program = Program()
        block = program.global_block()
416
        op = self._append_ops(block)
417 418 419 420 421

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

422
        if for_inplace_test:
423 424 425 426
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
427 428
            for out_name in op.output_arg_names:
                var = block.var(out_name)
429 430
                if 0 in var.shape:
                    var.persistable = True
431
        original_program = program
432 433
        if parallel:
            use_cuda = False
434
            if isinstance(place, fluid.CUDAPlace):
435
                use_cuda = True
436 437 438
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
439 440 441 442
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
443
            for var_name, var in six.iteritems(outputs):
444 445
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
446 447
                if isinstance(var, list):
                    for v in var:
448
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
449
                else:
450
                    fetch_list.append(var.name)
451 452 453 454
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
455 456 457 458 459 460 461 462 463

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

464
        executor = Executor(place)
465 466 467 468
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
469 470
        self.op = op
        self.program = original_program
471 472 473 474
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
                        np.array(expect_outs[i]),
                        np.array(actual_outs[i]),
                        atol=inplace_atol),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__)
            else:
                self.assertTrue(
                    np.array_equal(
                        np.array(expect_outs[i]), np.array(actual_outs[i])),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__ + '\n')

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its forward op. 

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op. 

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
        
        Args:
            op_desc (OpDesc): The op_desc of current op. 
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op. 
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
            
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
                # get grad_op_desc 
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
        """Chech the inplace correctness of given op (self.op_type).
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
        
        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
659 660 661 662 663 664 665 666 667 668
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
669
        # compare expect_outs and actual_outs
670 671 672 673 674 675
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
699
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
700
                                                                  set(), [])
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
        """Chech the inplace correctness of given grad_op_desc.

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
754

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn/ngraph
                # skip op that use_mkldnn and use_ngraph currently
796
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
797 798 799 800 801 802 803 804 805
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                use_ngraph = fluid.core.is_compiled_with_ngraph(
806
                ) and fluid.core.globals()["FLAGS_use_ngraph"]
807 808 809 810 811 812 813 814 815
                if use_ngraph:
                    warnings.warn(
                        "check inplace_grad for ops using ngraph is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
816
                else:
817 818
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
819

820 821 822 823
    def check_output_with_place(self,
                                place,
                                atol,
                                no_check_set=None,
M
minqiyang 已提交
824
                                equal_nan=False,
825
                                check_dygraph=True,
826
                                inplace_atol=None):
L
lujun 已提交
827 828
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
829
                place, no_check_set=no_check_set)
830
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
Y
Yang Yang(Tony) 已提交
831
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
832 833
            if out_name not in self.outputs:
                continue
834 835
            if no_check_set is not None and out_name in no_check_set:
                continue
836

837 838 839 840 841 842 843 844 845 846 847 848
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
849 850
            def find_actual(target_name, fetch_list):
                found = [
851 852
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
853 854 855 856 857 858
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

859 860
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
861 862 863
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
864 865
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
866
                    if check_dygraph:
867 868
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
869 870
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
Y
Yang Yang(Tony) 已提交
871
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
872 873
                    actual = outs[idx]
                    actual_t = np.array(actual)
874 875
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
876 877
                    self.assertTrue(
                        np.allclose(
878
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
879 880
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
881
                    if check_dygraph:
M
minqiyang 已提交
882 883 884 885 886 887 888
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
889
                            str(place) + " in dygraph mode")
890 891
                    if isinstance(expect, tuple):
                        self.assertListEqual(
892 893
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
894
                            ") has different lod at " + str(place))
895 896
                        if check_dygraph:
                            self.assertListEqual(
897
                                imperative_actual.value().get_tensor()
898 899 900 901
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
902
            else:
L
lujun 已提交
903
                if check_dygraph:
904 905
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
906 907
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
Y
Yang Yang(Tony) 已提交
908
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
909 910
                actual = outs[idx]
                actual_t = np.array(actual)
911
                expect = self.outputs[out_name]
912
                expect_t = expect[0] if isinstance(expect, tuple) else expect
913 914
                self.assertTrue(
                    np.allclose(
915
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
E
emailweixu 已提交
916
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
917
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
918
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
919
                if check_dygraph:
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
936
                if isinstance(expect, tuple):
937 938
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
939
                                         ") has different lod at " + str(place))
L
lujun 已提交
940
                    if check_dygraph:
M
minqiyang 已提交
941
                        self.assertListEqual(
942
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
943 944
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
945
                            str(place) + " in dygraph mode")
946

947 948 949 950
        # inplace_atol only used when op doesn't ensure computational consistency
        if inplace_atol is not None:
            warnings.warn(
                "By default, inplace_atol should not be set, please check it")
951 952
        # Check inplace for given op, its grad op, its grad_grad op, etc.
        # No effect on original OpTest 
953 954 955
        self.check_inplace_output_with_place(
            place, no_check_set=no_check_set, inplace_atol=inplace_atol)

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1004
    def _get_places(self):
D
dzhwinter 已提交
1005 1006 1007 1008 1009 1010
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1011 1012
                else:
                    return []
D
dzhwinter 已提交
1013 1014
            else:
                return []
1015
        places = [fluid.CPUPlace()]
1016
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
1017
        use_ngraph = fluid.core.is_compiled_with_ngraph(
1018
        ) and fluid.core.globals()['FLAGS_use_ngraph']
B
baojun 已提交
1019 1020
        if use_ngraph:
            cpu_only = True
1021 1022
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1023
            places.append(core.CUDAPlace(0))
1024 1025
        return places

M
minqiyang 已提交
1026 1027 1028 1029
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1030
                     check_dygraph=True,
1031 1032
                     inplace_atol=None,
                     check_compile_vs_runtime=False):
1033
        places = self._get_places()
Q
qijun 已提交
1034
        for place in places:
1035 1036 1037 1038 1039 1040 1041 1042
            res = self.check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph)
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
            if check_compile_vs_runtime:
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1043

1044
    def check_output_customized(self, checker):
1045
        places = self._get_places()
1046 1047 1048
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1049
            outs.sort(key=len)
1050 1051
            checker(outs)

D
Dun 已提交
1052 1053
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
1054

M
minqiyang 已提交
1055
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1056 1057 1058 1059 1060 1061 1062 1063
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1064
                return ("%s Variable %s max gradient diff %f over limit %f, "
D
dzhwinter 已提交
1065 1066 1067
                        "the first error element is %d, expected %f, but got %f"
                        ) % (msg_prefix, name, max_diff, max_relative_error,
                             offset, a.flatten()[offset], b.flatten()[offset])
1068 1069 1070 1071 1072

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1073
                   output_names,
1074
                   no_grad_set=None,
1075
                   numeric_grad_delta=0.005,
1076
                   in_place=False,
Q
Qiao Longfei 已提交
1077
                   max_relative_error=0.005,
1078 1079
                   user_defined_grads=None,
                   check_dygraph=True):
1080
        places = self._get_places()
1081 1082 1083 1084
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
1085
                                       user_defined_grads, check_dygraph)
1086 1087 1088 1089 1090 1091 1092 1093 1094

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1095 1096
                              user_defined_grads=None,
                              check_dygraph=True):
1097
        self.scope = core.Scope()
Q
qijun 已提交
1098
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1099
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1100
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1112

1113 1114 1115
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
1116 1117 1118
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
1119
        numeric_grads = user_defined_grads or [
1120
            get_numeric_gradient(
1121
                place,
1122 1123 1124 1125
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1126
                output_names,
1127
                delta=numeric_grad_delta,
C
chengduo 已提交
1128
                in_place=in_place) for input_to_check in inputs_to_check
1129
        ]
1130 1131
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)
D
Dun 已提交
1132 1133 1134
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        if check_dygraph:
            dygraph_grad = self._get_dygraph_grad(inputs_to_check, place,
                                                  output_names, no_grad_set)
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

            if len(outputs_valid) == 1:
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                for outputs_valid_key in outputs_valid:
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[outputs_valid_key]},
                        outputs={"Out": [loss]},
                        attrs=None)
            else:
                avg_sum = []
                for cur_loss in outputs_valid:
                    cur_avg_loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False)
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[cur_loss]},
                        outputs={"Out": [cur_avg_loss]},
                        attrs=None)
                    avg_sum.append(cur_avg_loss)
                loss_sum = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='sum',
                    inputs={"X": avg_sum},
                    outputs={"Out": loss_sum},
                    attrs=None)
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='scale',
                    inputs={"X": loss_sum},
                    outputs={"Out": loss},
                    attrs={'scale': 1.0 / float(len(avg_sum))})
            loss.backward()

            fetch_list_grad = []
            for inputs_to_check_name in inputs_to_check:
                a = inputs_grad_dict[inputs_to_check_name].gradient()
                fetch_list_grad.append(a)
            return fetch_list_grad

Y
Yu Yang 已提交
1244 1245 1246 1247 1248
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1249
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1250 1251
        return tensor

K
Kexin Zhao 已提交
1252
    @staticmethod
K
Kexin Zhao 已提交
1253 1254
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1255

D
dzhwinter 已提交
1256 1257 1258 1259 1260 1261 1262 1263
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1264 1265 1266 1267 1268 1269
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
Y
Yu Yang 已提交
1270 1271
        prog = Program()
        block = prog.global_block()
1272 1273
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
F
fengjiayi 已提交
1274
        param_grad_list = append_backward(
Y
Yu Yang 已提交
1275 1276
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

1277 1278
        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1279 1280

        fetch_list = [g for p, g in param_grad_list]
1281 1282
        if parallel:
            use_cuda = False
1283
            if isinstance(place, fluid.CUDAPlace):
1284
                use_cuda = True
1285 1286 1287 1288
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1289 1290 1291
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))
J
juncaipeng 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445


'''
The op test with int8 precision should inherit OpTestInt8.
'''


class OpTestInt8(OpTestBase):
    pass


'''
The op test with float16 precision should inherit OpTestFp16,
which requires the test to call check_grad. 
'''


class OpTestFp16(OpTestBase):
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
                     check_dygraph=True,
                     inplace_atol=None,
                     check_compile_vs_runtime=False):
        self.__class__.op_type = self.op_type
        OpTestBase.check_output(self, atol, no_check_set, equal_nan,
                                check_dygraph, inplace_atol,
                                check_compile_vs_runtime)

    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        assert self.dtype == np.float16, "The dtype of this test should be float16."

        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True

    def check_grad(self,
                   inputs_to_check,
                   output_names,
                   no_grad_set=None,
                   numeric_grad_delta=0.005,
                   in_place=False,
                   max_relative_error=0.005,
                   user_defined_grads=None,
                   check_dygraph=True):
        self._check_grad_helper()
        OpTestBase.check_grad(self, inputs_to_check, output_names, no_grad_set,
                              numeric_grad_delta, in_place, max_relative_error,
                              user_defined_grads, check_dygraph)

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None,
                              check_dygraph=True):
        self._check_grad_helper()
        OpTestBase.check_grad_with_place(
            self, place, inputs_to_check, output_names, no_grad_set,
            numeric_grad_delta, in_place, max_relative_error,
            user_defined_grads, check_dygraph)

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

        if cls.__name__ not in op_accuracy_white_list.NO_NEED_FP16_CHECK_GRAD_CASES \
            and not hasattr(cls, "exist_check_grad") \
            and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST:
            raise AssertionError("This test of %s op needs check_grad." %
                                 cls.op_type)


'''
The op test with float32/64 precision should inherit OpTest,
which requires the test to call check_grad with float64 precision. 
'''


class OpTest(OpTestBase):
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
                     check_dygraph=True,
                     inplace_atol=None,
                     check_compile_vs_runtime=False):
        self.__class__.op_type = self.op_type
        OpTestBase.check_output(self, atol, no_check_set, equal_nan,
                                check_dygraph, inplace_atol,
                                check_compile_vs_runtime)

    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        assert self.dtype in [np.float16, np.float32, np.float64], \
            "self.dtype = %s." % self.dtype
        if self.dtype == np.float16 and \
            self.op_type not in op_accuracy_white_list.FP16_CHECK_OP_LIST:
            raise AssertionError("The dtype of this test should be float32 "
                                 "or float64. op: %s dtype: %s." %
                                 (self.op_type, self.dtype))

        self.__class__.op_type = self.op_type
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

    def check_grad(self,
                   inputs_to_check,
                   output_names,
                   no_grad_set=None,
                   numeric_grad_delta=0.005,
                   in_place=False,
                   max_relative_error=0.005,
                   user_defined_grads=None,
                   check_dygraph=True):
        self._check_grad_helper()
        OpTestBase.check_grad(self, inputs_to_check, output_names, no_grad_set,
                              numeric_grad_delta, in_place, max_relative_error,
                              user_defined_grads, check_dygraph)

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None,
                              check_dygraph=True):
        self._check_grad_helper()
        OpTestBase.check_grad_with_place(
            self, place, inputs_to_check, output_names, no_grad_set,
            numeric_grad_delta, in_place, max_relative_error,
            user_defined_grads, check_dygraph)

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

        if cls.__name__ not in op_accuracy_white_list.NO_NEED_FP64_CHECK_GRAD_CASES \
            and not hasattr(cls, 'exist_fp64_check_grad') \
            and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST:
            raise AssertionError("This test of %s op needs fp64 check_grad." %
                                 cls.op_type)