broadcast_function.h 39.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/kernels/funcs/elementwise_base.h"
18

19
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
20

21
namespace kps = phi::kps;
22 23 24

#endif

25
namespace phi {
26 27
namespace funcs {

28 29
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)

30 31 32 33
struct DimensionsTransform {
  using DimVector = std::vector<int64_t>;
  typedef void (*MergeFunctor)(
      bool &, std::vector<DimVector> &, DimVector &, int, int);
34
  int64_t N;
35 36 37 38 39
  int64_t dim_size;
  DimVector out_dims;
  std::vector<DimVector> in_dims;

 private:
40 41
  // To compensate the lackage of input_tensors` dimension with input
  // variable 'axis'.
42 43 44 45 46 47 48 49 50 51 52
  void InputDimensionsExtend(int N, int axis) {
    for (auto &in_dim : in_dims) {
      int64_t in_idx = 0;
      if (in_dim.size() < dim_size) {
        DimVector tmp_dim(dim_size, 1);
        do {
          if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
            tmp_dim[axis] = in_dim[in_idx];
            in_idx++;
            axis++;
          } else {
53
            PADDLE_THROW(phi::errors::InvalidArgument(
54 55
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
56
                "received %d.",
57 58 59 60 61 62 63 64 65 66 67 68 69
                in_idx + 1,
                axis + 1,
                out_dims[axis],
                in_dim[in_idx]));
          }
        } while (in_idx < in_dim.size());
        in_dim.resize(dim_size);
        std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
      } else {
        do {
          if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
            in_idx++;
          } else {
70
            PADDLE_THROW(phi::errors::InvalidArgument(
71 72
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
73
                "received %d.",
74 75 76 77 78 79 80 81 82 83 84 85
                in_idx + 1,
                in_idx + 1,
                out_dims[in_idx],
                in_dim[in_idx]));
          }
        } while (in_idx < dim_size);
      }
      std::reverse(in_dim.begin(), in_dim.end());
    }
    std::reverse(out_dims.begin(), out_dims.end());
  }

86 87
  // Merge sequential dimension to shrink calculation cost for
  // offset computation in CUDA Kernel.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  template <typename MergeFunctor>
  __inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
    auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
      (*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
                                          vec->begin() + m_idx,
                                          1,
                                          std::multiplies<int64_t>());
      vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
    };

    int64_t i = 0;
    while (i < dim_size) {
      int cnt = 0;
      int low_idx = i;
      bool equal = true;
      do {
        merge_func(equal, in_dims, out_dims, i, N);
        if (equal) {
          i++;
          cnt++;
        } else {
          break;
        }
      } while (i < dim_size);

      if (cnt > 1) {
        for (auto &in_dim : in_dims) {
          VectorReorganise(&in_dim, low_idx, i);
        }
        VectorReorganise(&out_dims, low_idx, i);
        dim_size -= --cnt;
        i -= cnt;
      } else if (cnt < 1) {
        i++;
      }
    }
  }

126 127
  // To judge whether shape of any input tensors is sequential
  // 1-value-dimensions, and metric the length of it.
128
  bool FindSequentialOneDim(int *swap_index) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    int index = 0;
    int max_one_length = 0;
    for (int j = 0; j < N; ++j) {
      int seq_one_length = 0;
      bool active_seq = false;

      for (int i = 0; i < dim_size; ++i) {
        if (!active_seq && in_dims[j][i] == 1) {
          seq_one_length = 1;
          active_seq = true;
        } else if (active_seq) {
          if (in_dims[j][i] == 1) {
            seq_one_length++;
          } else {
            active_seq = false;
          }
        }
      }
      index = seq_one_length > max_one_length ? j : index;
148
      max_one_length = std::max(seq_one_length, max_one_length);
149 150
    }

151 152
    bool has_seq_one = max_one_length > 1;
    if (has_seq_one) {
153 154 155
      std::swap(in_dims[0], in_dims[index]);
      *swap_index = index;
    }
156
    return has_seq_one;
157 158
  }

159 160
 public:
  explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
161
                               const phi::DDim &dims,
162
                               int axis) {
163
    N = std::max(static_cast<int>(ins.size()), 2);
164
    dim_size = dims.size();
165
    out_dims = phi::vectorize<int64_t>(dims);
166 167 168
    in_dims.resize(N);
    if (ins.size() == 1) {
      // when ins.size() = 1, broadcast input to output
169
      in_dims[0] = phi::vectorize<int64_t>(ins[0]->dims());
170 171 172 173
      in_dims[1] = out_dims;
      // Add out_dims to in_dims to avoid errors in dims merging
    } else {
      for (int j = 0; j < N; ++j) {
174
        in_dims[j] = phi::vectorize<int64_t>(ins[j]->dims());
175 176 177 178
      }
    }
    InputDimensionsExtend(N, axis);

179 180 181 182 183
    // To Merge the dimensions of input_tensors while the consequtive
    // equal-dimensions appears. Example below :
    //   in_1.shape = [2, 3, 4, 5]    in_1.shape = [2, 12, 5]
    //   in_2.shape = [1, 3, 4, 5] -> in_2.shape = [1, 12, 5]
    //   in_3.shape = [2, 3, 4, 1]    in_3.shape = [2, 12, 1]
184 185 186 187 188 189 190 191 192
    auto merge_sequential_dims = [](bool &equal,
                                    std::vector<DimVector> &in_dims,
                                    DimVector &out,
                                    int i,
                                    int num) {
      for (int j = 1; j < num; ++j) {
        equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
      }
    };
193 194 195 196 197 198 199 200 201 202 203
    MergeFunctor merge_ptr = merge_sequential_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);

    // To Merge the dimension of input_tensors while the sequential
    // 1-value-dimensions appears. Example below :
    //   in_1.shape = [2, 1, 1, 5]    in_1.shape = [2,  1, 5]
    //   in_2.shape = [2, 3, 4, 5] -> in_2.shape = [1, 12, 5]
    //   in_3.shape = [2, 3, 4, 1]    in_3.shape = [2, 12, 1]
    // Caution: Once 1-value-dimensions appears, the corresponding
    // shape position of other input tensors must be same with the
    // output tensor`s shape, or incorrect merge may occur.
204 205 206 207 208 209 210 211 212 213 214 215
    auto merge_sequential_one_dims = [](bool &equal,
                                        std::vector<DimVector> &in_dims,
                                        DimVector &out,
                                        int i,
                                        int num) {
      equal = in_dims[0][i] == 1;
      if (equal) {
        for (int j = 1; j < num; ++j) {
          equal &= in_dims[j][i] == out[i];
        }
      }
    };
216 217 218 219
    for (auto i = 0; i < dim_size; ++i) {
      int swap_idx = 0;
      bool has_seq_one = FindSequentialOneDim(&swap_idx);
      if (!has_seq_one) break;
220 221 222
      merge_ptr = merge_sequential_one_dims;
      MergeDimensions<MergeFunctor>(merge_ptr, N);
      std::swap(in_dims[swap_idx], in_dims[0]);
223 224 225 226
    }
  }
};

227
template <typename InT, typename OutT>
228 229 230 231
int GetVecsize(const std::vector<const DenseTensor *> &ins,
               std::vector<DenseTensor *> *outs) {
  int in_vec_size = 4;
  int out_vec_size = 4;
232 233
  if (outs->size() > 1) {
    for (auto i = 1; i < outs->size(); ++i) {
234 235 236 237 238 239 240 241 242 243
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
          phi::errors::InvalidArgument(
              "The shape of each output tensor shall be identical yet, but "
              "%d-th output tensor`s shape is not.",
              i));
      out_vec_size = std::min(
          phi::GetVectorizedSize<OutT>((*outs)[i]->data<OutT>()), out_vec_size);
    }
244
  } else {
245 246 247 248 249 250 251 252
    out_vec_size = phi::GetVectorizedSize<OutT>((*outs)[0]->data<OutT>());
  }

  for (auto *in : ins) {
    auto temp_size = phi::GetVectorizedSize<InT>(in->data<InT>());
    in_vec_size = in->dims() == (*outs)[0]->dims()
                      ? std::min(temp_size, in_vec_size)
                      : in_vec_size;
253
  }
254
  return std::min(out_vec_size, in_vec_size);
255 256
}

257
template <typename T, int VecSize, bool IsBoundary = false>
258 259 260 261
__device__ __forceinline__ void LoadData(
    T *dst,
    const _ptr_ T *src,
    uint32_t block_offset,
262
    const kps::details::BroadcastConfig &config,
263 264 265 266 267 268 269
    int numel,
    int num,
    int need_broadcast,
    int read_lens) {
  // numel : whole num of output
  // num: how many data will be deal with in this time
  if (need_broadcast) {
270
    kps::ReadDataBc<T, VecSize, 1, IsBoundary>(
271 272
        dst, src, block_offset, config, numel, read_lens);
  } else {
273
    kps::ReadData<T, VecSize, 1, IsBoundary>(
274 275 276 277
        dst, src + block_offset, num, read_lens);
  }
}

278 279 280 281 282 283 284 285
template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          bool IsBoundary = false>
__device__ void VectorizedBroadcastKernelImpl(
286 287 288
    const phi::Array<const _ptr_ InT *__restrict__, Arity> &ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
    const phi::Array<int, Arity> &use_broadcast,
289
    uint32_t numel,
290
    const phi::Array<kps::details::BroadcastConfig, Arity> &configs,
291 292
    int num,
    int block_offset,
293
    int read_lens,
294
    Functor func) {
295 296
  __simd__ InT args[Arity][VecSize];
  __simd__ ConditionalT<OutT, NumOuts> result[VecSize];
297 298

#pragma unroll
299
  for (int i = 0; i < Arity; ++i) {
300
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f), read_lens);
301 302 303 304 305 306 307 308
    LoadData<InT, VecSize, IsBoundary>(args[i],
                                       ins[i],
                                       block_offset,
                                       configs[i],
                                       numel,
                                       num,
                                       use_broadcast[i],
                                       read_lens);
309 310 311
  }
  constexpr bool kCallElementwiseAny =
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
312 313 314 315 316 317
  phi::funcs::ElementwisePrimitiveCaller<InT,
                                         ConditionalT<OutT, NumOuts>,
                                         VecSize,
                                         Functor,
                                         Arity,
                                         kCallElementwiseAny>()(
318 319 320 321
      func, args, result, read_lens);
  phi::funcs::
      ElementwiseWriteDataCallerBc<OutT, VecSize, IsBoundary, NumOuts>()(
          outs, result, block_offset, num, read_lens);
322 323 324 325 326 327 328
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
329
          int VecSize>
330
__global__ void VectorizedBroadcastKernel(
331 332 333
    phi::Array<const _ptr_ InT *__restrict__, Arity> ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
    phi::Array<int, Arity> use_broadcast,
334
    uint32_t numel,
335
    phi::Array<kps::details::BroadcastConfig, Arity> configs,
336 337
    int main_offset,
    int tail_tid,
338
    int read_lens,
339
    Functor func) {
340 341
  int block_offset = BLOCK_ID_X * BLOCK_NUM_X * read_lens;
  int stride = BLOCK_NUM_X * GRID_NUM_X * read_lens;
342

343
#ifdef PADDLE_WITH_XPU_KP
344 345 346 347 348 349 350 351 352 353 354 355
  for (; block_offset < main_offset; block_offset += stride) {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  false>(ins,
                                         outs,
                                         use_broadcast,
                                         numel,
                                         configs,
356
                                         BLOCK_NUM_X * read_lens,
357
                                         block_offset,
358
                                         read_lens,
359 360 361 362 363 364 365 366 367 368
                                         func);
  }
  int num = numel - block_offset;
  if (num > 0) {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
369 370 371 372 373 374 375 376 377
                                  true>(ins,
                                        outs,
                                        use_broadcast,
                                        numel,
                                        configs,
                                        num,
                                        block_offset,
                                        read_lens,
                                        func);
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  }
#else
  if (block_offset < main_offset) {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
                                  false>(ins,
                                         outs,
                                         use_broadcast,
                                         numel,
                                         configs,
                                         BLOCK_NUM_X * VecSize,
                                         block_offset,
394
                                         read_lens,
395 396 397 398 399 400 401 402
                                         func);
  } else {
    VectorizedBroadcastKernelImpl<InT,
                                  OutT,
                                  Functor,
                                  Arity,
                                  NumOuts,
                                  VecSize,
403 404 405 406 407 408 409 410 411
                                  true>(ins,
                                        outs,
                                        use_broadcast,
                                        numel,
                                        configs,
                                        tail_tid,
                                        block_offset,
                                        read_lens,
                                        func);
412 413 414 415 416 417 418 419 420
  }
#endif
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
421 422 423 424 425 426 427
          int VecSize>
void LaunchBroadcastKernel(
    const KPDevice &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    Functor func,
    const phi::Array<kps::details::BroadcastConfig, Arity> &configs) {
428
  int numel = (*outs)[0]->numel();
429 430 431
  phi::Array<int, Arity> use_broadcast;
  phi::Array<const _ptr_ InT *__restrict__, Arity> ins_data;
  phi::Array<_ptr_ OutT *, NumOuts> outs_data;
432 433

  for (int i = 0; i < NumOuts; ++i) {
434
    outs_data[i] = (_ptr_ OutT *)(ctx.Alloc<OutT>((*outs)[i]));
435 436
  }

437
  for (int i = 0; i < Arity; ++i) {
438
    use_broadcast[i] = (ins[i]->numel() != numel);
439
    ins_data[i] = (const _ptr_ InT *)(ins[i]->data<InT>());
440 441
  }

442
#ifdef PADDLE_WITH_XPU_KP
443 444
  const int threads = 64;
  const int blocks = 8;
445
  int read_lens = configs[0].buf_len;
446
  auto stream = ctx.x_context()->xpu_stream;
447 448
  int main_offset = (numel / (read_lens * threads)) * read_lens * threads;
  int tail_tid = numel % (read_lens * threads);
449
#else
450 451 452
  auto gpu_config =
      phi::backends::gpu::GetGpuLaunchConfig1D(ctx, numel, VecSize);
  int read_lens = VecSize;
453
  auto stream = ctx.stream();
454 455 456 457 458 459
  auto threads = gpu_config.thread_per_block;
  auto blocks = gpu_config.block_per_grid;
  int main_offset = (numel / (read_lens * gpu_config.GetBlockSize())) *
                    read_lens * gpu_config.GetBlockSize();
  int tail_tid = numel % (read_lens * gpu_config.GetBlockSize());
#endif
460 461 462 463 464 465 466 467 468 469
  VectorizedBroadcastKernel<InT, OutT, Functor, Arity, NumOuts, VecSize>
      <<<blocks, threads, 0, stream>>>(ins_data,
                                       outs_data,
                                       use_broadcast,
                                       numel,
                                       configs,
                                       main_offset,
                                       tail_tid,
                                       read_lens,
                                       func);
470 471
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
#ifndef PADDLE_WITH_XPU_KP
HOSTDEVICE static int64_t ConvertSrcIdxToDstIdx(
    int64_t src_idx,
    const phi::Array<int64_t, phi::DDim::kMaxRank + 1> &src_strides,
    const phi::Array<int64_t, phi::DDim::kMaxRank + 1> &dst_strides,
    int rank) {
  int64_t dst_idx = 0;
  int64_t old_src_idx = src_idx;
  for (int k = 0; k < rank; ++k) {
    auto local_idx = src_idx / src_strides[k + 1];
    src_idx -= local_idx * src_strides[k + 1];

    if (dst_strides[k] != dst_strides[k + 1]) {
      dst_idx += local_idx * dst_strides[k + 1];
    }
  }
  return dst_idx;
}

template <typename T, int VecSize, bool IsBoundary>
HOSTDEVICE static void ReadVecDataWithInt64Index(
    const T *in,
    int64_t idx,
    bool need_broadcast,
    const phi::Array<int64_t, phi::DDim::kMaxRank + 1> &src_strides,
    const phi::Array<int64_t, phi::DDim::kMaxRank + 1> &dst_strides,
    int rank,
    int n,
    phi::AlignedVector<T, VecSize> *out) {
  if (IsBoundary) {
    for (int i = 0; i < n; ++i) {
      (*out)[i] =
          in[ConvertSrcIdxToDstIdx(idx + i, src_strides, dst_strides, rank)];
    }
  } else {
    if (!need_broadcast) {
      phi::Load<T, VecSize>(in + idx, out);
    } else {
#pragma unroll
      for (int i = 0; i < VecSize; ++i) {
        (*out)[i] =
            in[ConvertSrcIdxToDstIdx(idx + i, src_strides, dst_strides, rank)];
      }
    }
  }
}

template <typename InT,
          typename OutT,
          typename Functor,
          int VecSize,
          int NumIns>
struct ApplyFunctorWithInt64IndexHelper {
  HOSTDEVICE static OutT Run(const phi::AlignedVector<InT, VecSize> *ins_vec,
                             Functor functor,
                             int i);
};

template <typename InT, typename OutT, typename Functor, int VecSize>
struct ApplyFunctorWithInt64IndexHelper<InT, OutT, Functor, VecSize, 0> {
  HOSTDEVICE static OutT Run(const phi::AlignedVector<InT, VecSize> *ins_vec,
                             Functor functor,
                             int i) {
    return static_cast<OutT>(functor());
  }
};

template <typename InT, typename OutT, typename Functor, int VecSize>
struct ApplyFunctorWithInt64IndexHelper<InT, OutT, Functor, VecSize, 1> {
  HOSTDEVICE static OutT Run(const phi::AlignedVector<InT, VecSize> *ins_vec,
                             Functor functor,
                             int i) {
    return static_cast<OutT>(functor(ins_vec[0][i]));
  }
};

template <typename InT, typename OutT, typename Functor, int VecSize>
struct ApplyFunctorWithInt64IndexHelper<InT, OutT, Functor, VecSize, 2> {
  HOSTDEVICE static OutT Run(const phi::AlignedVector<InT, VecSize> *ins_vec,
                             Functor functor,
                             int i) {
    return static_cast<OutT>(functor(ins_vec[0][i], ins_vec[1][i]));
  }
};

template <typename InT, typename OutT, typename Functor, int VecSize>
struct ApplyFunctorWithInt64IndexHelper<InT, OutT, Functor, VecSize, 3> {
  HOSTDEVICE static OutT Run(const phi::AlignedVector<InT, VecSize> *ins_vec,
                             Functor functor,
                             int i) {
    return static_cast<OutT>(
        functor(ins_vec[0][i], ins_vec[1][i], ins_vec[2][i]));
  }
};

template <int N>
struct MaxWithOne {
  static constexpr auto kValue = (N >= 1 ? N : 1);
};

template <typename InT,
          typename OutT,
          typename Functor,
          int VecSize,
          int NumIns>
__global__ void BroadcastKernelWithInt64Index(
    phi::Array<const InT *, MaxWithOne<NumIns>::kValue> ins,
    OutT *out,
    phi::Array<phi::Array<int64_t, phi::DDim::kMaxRank + 1>,
               MaxWithOne<NumIns>::kValue> ins_strides,
    phi::Array<int64_t, phi::DDim::kMaxRank + 1> out_strides,
    phi::Array<bool, MaxWithOne<NumIns>::kValue> need_broadcasts,
    int rank,
    Functor functor) {
  int64_t numel = out_strides[0];
  int64_t idx =
      (static_cast<int64_t>(blockIdx.x) * blockDim.x + threadIdx.x) * VecSize;
  int64_t stride = static_cast<int64_t>(blockDim.x) * gridDim.x * VecSize;
  int64_t limit = numel - VecSize;

  phi::Array<phi::AlignedVector<InT, VecSize>, MaxWithOne<NumIns>::kValue>
      ins_vec;
  phi::AlignedVector<OutT, VecSize> out_vec;
  for (; idx <= limit; idx += stride) {
#pragma unroll
    for (int i = 0; i < NumIns; ++i) {
      ReadVecDataWithInt64Index<InT, VecSize, false>(ins[i],
                                                     idx,
                                                     need_broadcasts[i],
                                                     out_strides,
                                                     ins_strides[i],
                                                     rank,
                                                     VecSize,
                                                     &ins_vec[i]);
    }

#pragma unroll
    for (int i = 0; i < VecSize; ++i) {
      out_vec[i] = ApplyFunctorWithInt64IndexHelper<InT,
                                                    OutT,
                                                    Functor,
                                                    VecSize,
                                                    NumIns>::Run(ins_vec.Get(),
                                                                 functor,
                                                                 i);
    }

    phi::Store<OutT, VecSize>(out_vec, out + idx);
  }

  if (idx < numel) {
    int remain = numel - idx;  // remain is always less than VecSize, therefore
                               // `int` is enough here
#pragma unroll
    for (int i = 0; i < NumIns; ++i) {
      ReadVecDataWithInt64Index<InT, VecSize, true>(ins[i],
                                                    idx,
                                                    need_broadcasts[i],
                                                    out_strides,
                                                    ins_strides[i],
                                                    rank,
                                                    remain,
                                                    &ins_vec[i]);
    }

    for (int i = 0; i < remain; ++i) {
      out[idx + i] =
          ApplyFunctorWithInt64IndexHelper<InT,
                                           OutT,
                                           Functor,
                                           VecSize,
                                           NumIns>::Run(ins_vec.Get(),
                                                        functor,
                                                        i);
    }
  }
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
struct LaunchBroadcastKernelWithInt64IndexHelper {
  static void Run(const KPDevice &ctx,
                  const std::vector<const DenseTensor *> &ins,
                  std::vector<DenseTensor *> *outs,
                  int axis,
                  Functor functor) {
    PADDLE_THROW(phi::errors::PermissionDenied(
        "Unreachable code branch. This may be a bug."));
  }
};

template <typename InT, typename OutT, typename Functor, int Arity, int VecSize>
struct LaunchBroadcastKernelWithInt64IndexHelper<InT,
                                                 OutT,
                                                 Functor,
                                                 Arity,
                                                 /*NumOuts=*/1,
                                                 VecSize> {
  static void Run(const KPDevice &ctx,
                  const std::vector<const DenseTensor *> &ins,
                  std::vector<DenseTensor *> *outs,
                  int axis,
                  Functor functor) {
    phi::Array<const InT *, MaxWithOne<Arity>::kValue> ins_ptrs;
    for (int i = 0; i < Arity; ++i) {
      ins_ptrs[i] = ins[i]->data<InT>();
    }
    auto *out_tensor = (*outs)[0];
    auto *out_ptr = ctx.Alloc<OutT>(out_tensor);

    phi::Array<phi::Array<int64_t, phi::DDim::kMaxRank>,
               MaxWithOne<Arity>::kValue>
        ins_expand_dims;
    phi::Array<int64_t, phi::DDim::kMaxRank> broadcast_out_dims;
    int rank;
    if (Arity == 1) {
      rank = ins[0]->dims().size();
      for (int i = 0; i < rank; ++i) {
        broadcast_out_dims[i] = ins[0]->dims()[i];
      }
      ins_expand_dims[0] = broadcast_out_dims;
    } else if (Arity >= 2) {
      CalculateBroadcastDims(ins[0]->dims().Get(),
                             ins[1]->dims().Get(),
                             ins[0]->dims().size(),
                             ins[1]->dims().size(),
                             axis,
                             ins_expand_dims[0].GetMutable(),
                             ins_expand_dims[1].GetMutable(),
                             broadcast_out_dims.GetMutable(),
                             &rank);
      for (int i = 2; i < Arity; ++i) {
        auto tmp_dims = broadcast_out_dims;
        phi::Array<int64_t, phi::DDim::kMaxRank> tmp_expand_dims;
        int tmp_rank;
        PADDLE_ENFORCE_GE(rank,
                          ins[i]->dims().size(),
                          phi::errors::InvalidArgument(
                              "Unsupported reverse broadcast when the input "
                              "tensor number is larger than 2."));
        CalculateBroadcastDims(tmp_dims.Get(),
                               ins[i]->dims().Get(),
                               rank,
                               ins[i]->dims().size(),
                               axis,
                               tmp_expand_dims.GetMutable(),
                               ins_expand_dims[i].GetMutable(),
                               broadcast_out_dims.GetMutable(),
                               &tmp_rank);
        PADDLE_ENFORCE_EQ(rank,
                          tmp_rank,
                          phi::errors::InvalidArgument(
                              "Wrong broadcast algorithm. This may be a bug."));
      }
    }

    phi::Array<phi::Array<int64_t, phi::DDim::kMaxRank + 1>,
               MaxWithOne<Arity>::kValue>
        ins_strides;
    phi::Array<bool, MaxWithOne<Arity>::kValue> need_broadcasts;
    phi::Array<int64_t, phi::DDim::kMaxRank + 1> out_strides;
    const auto &out_dims = out_tensor->dims();
    if (rank <= out_dims.size()) {
      out_strides = ShapeToStride(out_dims.Get(), rank);
    } else {
      out_strides = ShapeToStride(broadcast_out_dims.Get(), rank);
    }

    for (int i = 0; i < Arity; ++i) {
      ins_strides[i] = ShapeToStride(ins_expand_dims[i].Get(), rank);
      need_broadcasts[i] =
          !IsSameShape(out_strides.Get(), ins_strides[i].Get(), rank + 1);
    }

    int64_t numel = out_strides[0];
    auto gpu_config =
        phi::backends::gpu::GetGpuLaunchConfig1D(ctx, numel, VecSize);

    BroadcastKernelWithInt64Index<InT, OutT, Functor, VecSize, Arity>
        <<<gpu_config.block_per_grid,
           gpu_config.thread_per_block,
           0,
           ctx.stream()>>>(ins_ptrs,
                           out_ptr,
                           ins_strides,
                           out_strides,
                           need_broadcasts,
                           rank,
                           functor);
  }

 private:
  static void CalculateBroadcastDims(const int64_t *x_dims,
                                     const int64_t *y_dims,
                                     int nx,
                                     int ny,
                                     int axis,
                                     int64_t *x_out_dims,
                                     int64_t *y_out_dims,
                                     int64_t *broadcast_out_dims,
                                     int *length) {
    PADDLE_ENFORCE_GE(
        axis, 0, phi::errors::InvalidArgument("Invalid axis value: %d", axis));
    if (nx == ny) {
      *length = nx;
      for (int i = 0; i < nx; ++i) {
        if (x_dims[i] != y_dims[i]) {
          PADDLE_ENFORCE_EQ(
              x_dims[i] == 1 || y_dims[i] == 1,
              true,
              phi::errors::InvalidArgument("Cannot broadcast input shape where "
                                           "x_dims[%d] = %d, y_dims[%d] = %d.",
                                           i,
                                           x_dims[i],
                                           i,
                                           y_dims[i]));
        }
        broadcast_out_dims[i] = std::max(x_dims[i], y_dims[i]);
        x_out_dims[i] = x_dims[i];
        y_out_dims[i] = y_dims[i];
      }
    } else if (nx > ny) {
      *length = nx;
      for (int i = nx - axis; i < ny; ++i) {
        PADDLE_ENFORCE_EQ(
            y_dims[i],
            1,
            phi::errors::InvalidArgument(
                "The trailing Y.shape[%d] should be 1 but got %d.",
                i,
                y_dims[i]));
      }

      for (int i = 0; i < nx; ++i) {
        if (i >= axis && i - axis < ny) {
          if (x_dims[i] != y_dims[i - axis]) {
            PADDLE_ENFORCE_EQ(x_dims[i] == 1 || y_dims[i - axis] == 1,
                              true,
                              phi::errors::InvalidArgument(
                                  "Cannot broadcast input shape where "
                                  "x_dims[%d] = %d, y_dims[%d] = %d.",
                                  i,
                                  x_dims[i],
                                  i - axis,
                                  y_dims[i - axis]));
          }
          broadcast_out_dims[i] = std::max(x_dims[i], y_dims[i - axis]);
          x_out_dims[i] = x_dims[i];
          y_out_dims[i] = y_dims[i - axis];
        } else {
          broadcast_out_dims[i] = x_dims[i];
          x_out_dims[i] = x_dims[i];
          y_out_dims[i] = 1;
        }
      }
    } else {
      CalculateBroadcastDims(y_dims,
                             x_dims,
                             ny,
                             nx,
                             axis,
                             y_out_dims,
                             x_out_dims,
                             broadcast_out_dims,
                             length);
    }
  }

  static bool IsSameShape(const int64_t *x, const int64_t *y, int rank) {
    for (int i = 0; i < rank; ++i) {
      if (x[i] != y[i]) return false;
    }
    return true;
  }

  static phi::Array<int64_t, phi::DDim::kMaxRank + 1> ShapeToStride(
      const int64_t *arr, int rank) {
    phi::Array<int64_t, phi::DDim::kMaxRank + 1> strides;
    strides[rank] = 1;
    for (int i = rank - 1; i >= 0; --i) {
      strides[i] = strides[i + 1] * arr[i];
    }
    return strides;
  }
};
#endif

863 864 865 866 867 868 869 870 871 872 873 874 875 876
template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
void BroadcastKernelForDifferentVecSize(
    const KPDevice &ctx,
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
  PADDLE_ENFORCE_EQ(
      ins.size(),
      kArity,
      phi::errors::InvalidArgument("The number of inputs is expected to be "
                                   "equal to the "
                                   "arity of functor. But recieved: the "
                                   "number of inputs "
                                   "is %d, the arity of functor is %d.",
                                   ins.size(),
                                   kArity));
  PADDLE_ENFORCE_LE(
      kArity,
      3,
      phi::errors::InvalidArgument("Currently only broadcast of ternary is "
                                   "supported "
                                   "and verified, but received %d.",
                                   kArity));
  PADDLE_ENFORCE_EQ(
      outs->size(),
      NumOuts,
      phi::errors::InvalidArgument("Number of outputs shall equal to number "
                                   "of functions, "
                                   "but number of outputs is %d, of "
                                   "functions is %d.",
                                   outs->size(),
                                   NumOuts));
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

#ifndef PADDLE_WITH_XPU_KP
  constexpr bool kEnabledInt64IndexKernel = (NumOuts == 1 && kArity <= 3);
  bool use_int64_index_kernel =
      kEnabledInt64IndexKernel &&
      (*outs)[0]->numel() >= std::numeric_limits<int32_t>::max();
  if (use_int64_index_kernel) {
    int vec_size = GetVecsize<InT, OutT>(ins, outs);
    switch (vec_size) {
      case VecSizeL: {
        LaunchBroadcastKernelWithInt64IndexHelper<InT,
                                                  OutT,
                                                  Functor,
                                                  kArity,
                                                  NumOuts,
                                                  VecSizeL>::Run(ctx,
                                                                 ins,
                                                                 outs,
                                                                 axis,
                                                                 func);
        break;
      }
      case VecSizeM: {
        LaunchBroadcastKernelWithInt64IndexHelper<InT,
                                                  OutT,
                                                  Functor,
                                                  kArity,
                                                  NumOuts,
                                                  VecSizeM>::Run(ctx,
                                                                 ins,
                                                                 outs,
                                                                 axis,
                                                                 func);
        break;
      }
      case VecSizeS: {
        LaunchBroadcastKernelWithInt64IndexHelper<InT,
                                                  OutT,
                                                  Functor,
                                                  kArity,
                                                  NumOuts,
                                                  VecSizeS>::Run(ctx,
                                                                 ins,
                                                                 outs,
                                                                 axis,
                                                                 func);
        break;
      }
      default: {
        PADDLE_THROW(phi::errors::Unimplemented(
            "Unsupported vectorized size: %d!", vec_size));
        break;
      }
    }
    return;
  }
#endif

961 962 963
  // mergedim and get vec_size
  const auto merge_dims = DimensionsTransform(ins, (*outs)[0]->dims(), axis);
  phi::Array<kps::details::BroadcastConfig, kArity> configs;
964

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
// get vec_size
#ifdef PADDLE_WITH_XPU_KP
  PADDLE_ENFORCE_EQ(
      ins.size(),
      2,
      phi::errors::InvalidArgument(
          "XPU only support inputs is 2, but received %d", ins.size()));
  configs[0] = kps::details::BroadcastConfig(merge_dims.out_dims,
                                             merge_dims.in_dims[0],
                                             merge_dims.in_dims[1],
                                             merge_dims.dim_size);
  configs[1] = kps::details::BroadcastConfig(merge_dims.out_dims,
                                             merge_dims.in_dims[1],
                                             merge_dims.in_dims[0],
                                             merge_dims.dim_size);
  auto type = kps::details::OptType::CanNotOptimize;
  bool is_optimize = configs[0].cmp_type != type;
  int vec_size = is_optimize ? VecSizeL : VecSizeM;
#else
984
  for (int i = 0; i < kArity; ++i) {
985 986 987 988 989 990 991
    // get the broadcast config,
    // if data shape is[m, n], then you should set data_dim = {n, m}
    // eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
    if (ins[i]->numel()) {
      configs[i] = kps::details::BroadcastConfig(
          merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
    }
992
  }
993
  int vec_size = GetVecsize<InT, OutT>(ins, outs);
994
#endif
995 996

  switch (vec_size) {
997 998 999
    case VecSizeL: {
      LaunchBroadcastKernel<InT, OutT, Functor, kArity, NumOuts, VecSizeL>(
          ctx, ins, outs, func, configs);
1000 1001
      break;
    }
1002 1003 1004
    case VecSizeM: {
      LaunchBroadcastKernel<InT, OutT, Functor, kArity, NumOuts, VecSizeM>(
          ctx, ins, outs, func, configs);
1005 1006
      break;
    }
1007 1008 1009
    case VecSizeS: {
      LaunchBroadcastKernel<InT, OutT, Functor, kArity, NumOuts, VecSizeS>(
          ctx, ins, outs, func, configs);
1010 1011 1012
      break;
    }
    default: {
1013
      PADDLE_THROW(phi::errors::Unimplemented(
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
          "Unsupported vectorized size: %d!", vec_size));
      break;
    }
  }
}

template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
void BroadcastKernel(const KPDevice &ctx,
                     const std::vector<const DenseTensor *> &ins,
                     std::vector<DenseTensor *> *outs,
                     int axis,
                     Functor func) {
  std::vector<int> dims_size;
1031
  dims_size.reserve(ins.size());
1032 1033 1034 1035
  for (auto *in : ins) {
    dims_size.emplace_back(in->dims().size());
  }

1036 1037 1038
  axis = axis == -1 ? *std::max_element(dims_size.begin(), dims_size.end()) -
                          *std::min_element(dims_size.begin(), dims_size.end())
                    : axis;
1039 1040
  BroadcastKernelForDifferentVecSize<ET, InT, OutT, Functor, NumOuts>(
      ctx, ins, outs, axis, func);
1041 1042
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const GPUContext &dev_ctx,
                        const DenseTensor &x,
                        const DenseTensor &y,
                        int axis,
                        Functor func,
                        DenseTensor *z) {
  std::vector<const DenseTensor *> ins = {&x, &y};
  std::vector<DenseTensor *> outs = {z};
  z->mutable_data<OutType>(dev_ctx.GetPlace());
  BroadcastKernel<ElementwiseType::kBinary, T, OutType, Functor, 1>(
      dev_ctx, ins, &outs, axis, func);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
template <typename DeviceContext,
          typename T,
          typename Functor,
          typename InverseFunctor>
void DefaultElementwiseOperator(const DeviceContext &dev_ctx,
                                const DenseTensor &x,
                                const DenseTensor &y,
                                DenseTensor *z,
                                int axis = -1) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  dev_ctx.template Alloc<T>(z);
  funcs::ElementwiseCompute<Functor, T>(dev_ctx, x, y, axis, Functor(), z);
}

#else
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
template <typename DeviceContext,
          typename T,
          typename Functor,
          typename InverseFunctor>
void DefaultElementwiseOperator(const DeviceContext &dev_ctx,
                                const DenseTensor &x,
                                const DenseTensor &y,
                                DenseTensor *z,
                                int axis = -1) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  dev_ctx.template Alloc<T>(z);
  if (x_dims.size() >= y_dims.size()) {
    funcs::ElementwiseCompute<Functor, T>(dev_ctx, x, y, axis, Functor(), z);
  } else {
    funcs::ElementwiseCompute<InverseFunctor, T>(
        dev_ctx, x, y, axis, InverseFunctor(), z);
  }
}

1094 1095
#endif

1096
}  // namespace funcs
1097
}  // namespace phi