eager_functions.cc 40.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20 21 22 23 24 25 26
#include <Python.h>

#include <string>
#include <vector>

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
27
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
28
#include "paddle/fluid/eager/utils.h"
29
#include "paddle/fluid/framework/convert_utils.h"
30 31
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
32
#include "paddle/fluid/framework/python_headers.h"
33 34
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
W
wanghuancoder 已提交
35
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
36
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
37
#include "paddle/fluid/platform/enforce.h"
W
wanghuancoder 已提交
38
#include "paddle/fluid/platform/stream/cuda_stream.h"
39 40 41
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
42
#include "paddle/fluid/pybind/tensor_py.h"
43
#include "paddle/phi/api/ext/op_meta_info.h"
44 45 46 47 48
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
51 52
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
53

54 55 56 57 58
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

59
extern PyTypeObject* p_tensor_type;
60 61
extern PyTypeObject* g_multidevicefeedreader_pytype;
extern PyTypeObject* g_orderedmultidevicefeedreader_pytype;
62 63 64 65 66 67 68 69 70 71 72

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

73
class EagerNumpyAllocation : public phi::Allocation {
74
 public:
75
  explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype)
76 77
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
78
            framework::DataTypeSize(dtype) * PyArray_Size_(numpy_data),
79 80
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
81 82 83 84
    PADDLE_ENFORCE_NOT_NULL(
        arr_,
        platform::errors::InvalidArgument("The underlying PyObject pointer of "
                                          "numpy array cannot be nullptr"));
85
    PADDLE_ENFORCE_NE(
86 87
        arr_,
        Py_None,
88 89 90 91 92 93 94 95 96 97 98 99 100
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

101 102
static PyObject* eager_api_scale(PyObject* self,
                                 PyObject* args,
103 104 105
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
106 107 108 109 110 111
  paddle::experimental::Tensor ret = egr::scale(
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor,
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1),
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4));
112 113 114 115
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

116 117
static PyObject* eager_api_run_backward(PyObject* self,
                                        PyObject* args,
118 119
                                        PyObject* kwargs) {
  EAGER_TRY
120 121
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
122 123
  egr::Backward(tensors,
                grad_tensors,
124
                CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2));
125
  RETURN_PY_NONE
126 127 128
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

129 130
static PyObject* eager_api_run_partial_grad(PyObject* self,
                                            PyObject* args,
131 132 133 134 135 136 137 138 139 140 141
                                            PyObject* kwargs) {
  EAGER_TRY
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2);
  auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5);
  auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6);
  auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7);

142 143 144 145 146 147 148 149
  std::vector<paddle::experimental::Tensor> result = egr::Grad(tensors,
                                                               inputs,
                                                               grad_tensors,
                                                               retain_graph,
                                                               create_graph,
                                                               only_inputs,
                                                               allow_unused,
                                                               no_grad_vars);
150 151 152 153 154
  VLOG(1) << " in eager_api_run_partial_grad, after runing egr::Grad";
  return ToPyObject(result, true /* return_py_none_if_not_initialize */);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

155 156
static PyObject* eager_api_tensor_copy(PyObject* self,
                                       PyObject* args,
157 158
                                       PyObject* kwargs) {
  EAGER_TRY
159 160 161 162
  paddle::experimental::Tensor& src =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  paddle::experimental::Tensor& dst =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 1))->tensor;
163 164 165
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);

166
  dst = src.copy_to(place, blocking);
167 168 169 170
  egr::EagerUtils::autograd_meta(&dst)->SetStopGradient(
      egr::EagerUtils::autograd_meta(&(src))->StopGradient());
  egr::EagerUtils::autograd_meta(&dst)->SetPersistable(
      egr::EagerUtils::autograd_meta(&(src))->Persistable());
171
  RETURN_PY_NONE
172 173 174
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

175 176
static PyObject* eager_api_read_next_tensor_list(PyObject* self,
                                                 PyObject* args,
177
                                                 PyObject* kwargs) {
178
  EAGER_TRY
179 180 181 182 183 184
  auto tensor_base_list =
      CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> tensor_list;
  tensor_list.reserve(tensor_base_list.size());
  auto func = [](framework::Tensor& tensor_base) {
    paddle::experimental::Tensor tensor(
185
        egr::Controller::Instance().GenerateUniqueName());
186
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
187 188
    autograd_meta->SetPersistable(false);
    autograd_meta->SetStopGradient(true);
189
    tensor.set_impl(std::make_shared<phi::DenseTensor>(tensor_base));
190
    return tensor;
191
  };
192 193
  for (auto& tensor_base : tensor_base_list) {
    tensor_list.emplace_back(func(tensor_base));
194
  }
195
  return ToPyObject(tensor_list);
196 197 198
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static void ConstructFwdAndBwdMap(
    const std::vector<paddle::OpMetaInfo>& vec_map,
    const std::string& op_type) {
  auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap();
  if (in_out_map.find(op_type) != in_out_map.end()) {
    VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> ";
    return;
  } else {
    VLOG(7) << "Construct CustomEdgesSlotMap ";
    auto inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[0]);
    auto outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[0]);
    auto attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[0]);
    auto grad_outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[1]);
    auto grad_inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[1]);
    auto grad_attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[1]);
    std::vector<std::unordered_map<int, int>> res(5);
221 222

    in_out_map.insert({op_type, {res}});
223 224 225
    // Prepare pos map for grad_outputs
    VLOG(7) << "Prepare pos map for grad_outputs";
    PADDLE_ENFORCE_LE(
226 227
        grad_outputs_names.size(),
        inputs_names.size(),
228 229 230 231 232
        paddle::platform::errors::InvalidArgument(
            "Grad outputs num should be less equal than forward inputs num."));
    for (size_t i = 0; i < grad_outputs_names.size(); i++) {
      size_t end = grad_outputs_names[i].find("@GRAD");
      PADDLE_ENFORCE_NE(
233 234
          end,
          std::string::npos,
235 236 237 238 239 240 241 242 243
          paddle::platform::errors::NotFound(
              "All Grad outputs should be grad and we got %s is not grad var, "
              "please check your op and change to fit the rule.",
              grad_outputs_names[i]));
      for (size_t j = 0; j < inputs_names.size(); j++) {
        if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " inputs: " << inputs_names[j] << " related to No." << i
                  << " grad_outputs: " << grad_outputs_names[i];
244
          in_out_map[op_type][0][0][j] = i;
245 246 247 248 249 250 251 252 253 254 255 256
        }
      }
    }
    // Prepare pos map for grad_inputs
    for (size_t i = 0; i < grad_inputs_names.size(); i++) {
      size_t end = grad_inputs_names[i].find("@GRAD");
      if (end != std::string::npos) {
        for (size_t j = 0; j < outputs_names.size(); j++) {
          if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) {
            VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                    << " outputs: " << outputs_names[j] << " related to No."
                    << i << " grad_inputs's grad: " << grad_inputs_names[i];
257
            in_out_map[op_type][0][1][j] = i;
258 259 260
          }
        }
      } else {
261 262
        if (std::find(outputs_names.begin(),
                      outputs_names.end(),
263 264 265 266 267 268 269
                      grad_inputs_names[i]) != outputs_names.end()) {
          for (size_t j = 0; j < outputs_names.size(); j++) {
            if (grad_inputs_names[i] == outputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " outputs: " << outputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd outputs: " << grad_inputs_names[i];
270
              in_out_map[op_type][0][2][j] = i;
271 272 273 274 275 276 277 278 279
            }
          }
        } else {
          for (size_t j = 0; j < inputs_names.size(); j++) {
            if (grad_inputs_names[i] == inputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " inputs: " << inputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd inputs: " << grad_inputs_names[i];
280
              in_out_map[op_type][0][3][j] = i;
281 282 283 284 285 286 287 288
            }
          }
        }
      }
    }

    // Prepare pos map for grad attrs_
    for (size_t i = 0; i < grad_attrs_names.size(); i++) {
289 290 291 292
      auto end = std::find(
          attrs_names.begin(), attrs_names.end(), grad_attrs_names[i]);
      PADDLE_ENFORCE_NE(end,
                        attrs_names.end(),
293 294 295 296 297 298 299 300 301 302
                        paddle::platform::errors::NotFound(
                            "All Grad attrs should be one of forward attrs and "
                            "we got %s is not one of them, please check your "
                            "op and change to fit the rule.",
                            grad_attrs_names[i]));
      for (size_t j = 0; j < attrs_names.size(); j++) {
        if (grad_attrs_names[i] == attrs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " attrs: " << attrs_names[j] << " related to No." << i
                  << " grad_attrs: " << grad_attrs_names[i];
303
          in_out_map[op_type][0][4][j] = i;
304 305 306 307 308 309 310 311 312 313
        }
      }
    }
  }
}

static std::vector<paddle::any> CastAttrsToTragetType(
    const std::vector<paddle::any>& src,
    const std::vector<std::string>& attrs_names) {
  std::vector<paddle::any> res;
314 315
  PADDLE_ENFORCE_EQ(src.size(),
                    attrs_names.size(),
316 317 318 319
                    paddle::platform::errors::InvalidArgument(
                        "We Expected same size of attrs and attrs_name list, "
                        "if u got this error indicate your custom op setting "
                        "%s attrs, but you just give %s",
320 321
                        attrs_names.size(),
                        src.size()));
322 323 324 325 326 327 328 329 330 331 332 333 334
  for (size_t i = 0; i < src.size(); i++) {
    size_t end = attrs_names[i].find(": ");
    std::string type_name =
        attrs_names[i].substr(end + 2, attrs_names.size() - end - 2);
    if (type_name == "int") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32, other type is "
            "forbidden for now but we got %s. Check your code first please",
335 336
            i,
            src[i].type().name()));
337 338 339 340 341 342 343 344 345 346 347 348 349
      }
    } else if (type_name == "int64_t") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<int>(src[i])));
      } else if (src[i].type() == typeid(int64_t)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32 or int64_t, "
            "other type is forbidden for now but we got %s. Check your code "
            "first please",
350 351
            i,
            src[i].type().name()));
352 353 354 355 356 357 358 359
      }
    } else {
      res.emplace_back(src[i]);
    }
  }
  return res;
}

360 361 362 363 364 365 366 367 368 369 370 371 372
static PyObject* eager_api_jit_function_call(PyObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  std::shared_ptr<jit::BaseFunction> function =
      CastPyArg2BaseFunction(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> ins =
      CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  std::vector<paddle::experimental::Tensor> outs = (*function)(ins);
  return ToPyObject(outs);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

373 374
static PyObject* eager_api_run_costum_op(PyObject* self,
                                         PyObject* args,
375 376 377 378 379 380 381 382 383
                                         PyObject* kwargs) {
  EAGER_TRY
  paddle::CustomOpKernelContext ctx =
      CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0);
  std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
  VLOG(7) << "Get things for python for Custom Op: " << op_type
          << ", trace_backward is: " << trace_backward;
  auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap();
384 385
  PADDLE_ENFORCE_NE(meta_info_map.find(op_type),
                    meta_info_map.end(),
386 387 388 389 390 391
                    paddle::platform::errors::NotFound(
                        "Can't find %s in Eager OpMetaInfoMap which should be "
                        "created by LoadOpMetaInfoAndRegisterOp, please make "
                        "sure you registered your op first and try again. ",
                        op_type));
  VLOG(7) << "Run Kernel of Custom Op: " << op_type;
392 393 394 395
  std::vector<paddle::any> res_attrs =
      CastAttrsToTragetType(ctx.Attrs(),
                            paddle::framework::OpMetaInfoHelper::GetAttrs(
                                meta_info_map.at(op_type)[0]));
396 397 398 399 400 401 402 403 404 405 406
  ctx.EmplaceBackAttrs(res_attrs);
  const auto& vec_map = meta_info_map.at(op_type);
  (*paddle::framework::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx);

  VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op";
  std::vector<std::vector<egr::AutogradMeta*>> ins_auto_grad_metas;
  std::vector<std::vector<egr::AutogradMeta*>> outs_auto_grad_metas;
  VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size();
  ins_auto_grad_metas.resize(ctx.InputRange().size());
  VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size();
  outs_auto_grad_metas.resize(ctx.OutputRange().size());
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
  for (size_t i = 0; i < ctx.InputRange().size(); i++) {
    ins_auto_grad_metas[i] =
        egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween(
            ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second));
  }
  for (size_t i = 0; i < ctx.OutputRange().size(); i++) {
    outs_auto_grad_metas[i] =
        egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen(
            ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
  }
  bool require_any_grad = false;
  for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
    require_any_grad =
        require_any_grad || egr::EagerUtils::ComputeRequireGrad(
                                trace_backward, &(ins_auto_grad_metas[i]));
  }
424
  if (require_any_grad && (vec_map.size() > 1)) {
425 426 427 428 429 430 431 432 433 434 435 436
    VLOG(6) << " Construct Grad for Custom Op: " << op_type;
    ConstructFwdAndBwdMap(vec_map, op_type);
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
      egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i]));
    }
    auto grad_node = std::make_shared<egr::RunCustomOpNode>(
        outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type);
    auto slot_map =
        egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type);
    // Prepare Grad outputs
    size_t no_grad_cnt = 0;
    for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
437 438 439 440
      const std::vector<paddle::experimental::Tensor>& in_tensors =
          ctx.InputsBetween(ctx.InputRangeAt(i).first,
                            ctx.InputRangeAt(i).second);

441 442
      if (slot_map[0][0].find(i) != slot_map[0][0].end()) {
        grad_node->SetGradOutMeta(in_tensors, slot_map[0][0][i]);
443
      } else {
444
        grad_node->SetGradOutMeta(in_tensors,
445 446 447 448 449 450
                                  ins_auto_grad_metas.size() - 1 - no_grad_cnt);
        no_grad_cnt++;
      }
    }
    // Prepare Grad inputs with grad of fwd outputs
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
451 452 453 454
      const std::vector<paddle::experimental::Tensor>& out_tensors =
          ctx.OutputsBetweeen(ctx.OutputRangeAt(i).first,
                              ctx.OutputRangeAt(i).second);

455 456
      egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i);
      egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node);
457 458
      grad_node->SetGradInMeta(out_tensors, i);
      egr::EagerUtils::CheckAndRetainGrad(out_tensors);
459 460 461
    }

    // Prepare Grad inputs with fwd outputs
462
    for (auto it = slot_map[0][2].begin(); it != slot_map[0][2].end(); it++) {
463 464 465 466 467 468 469 470 471
      VLOG(7) << "Prepare fwd_outs: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_outs[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first,
                                  ctx.OutputRangeAt(it->first).second));
    }

    // Prepare Grad inputs with fwd inputs
472
    for (auto it = slot_map[0][3].begin(); it != slot_map[0][3].end(); it++) {
473 474 475 476 477 478 479 480 481 482 483 484
      VLOG(7) << "Prepare fwd_ins: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_ins[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.InputsBetween(ctx.InputRangeAt(it->first).first,
                                ctx.InputRangeAt(it->first).second));
    }

    auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(
        meta_info_map.at(op_type)[1]);
    std::vector<paddle::any> attrs(attrs_names.size());
    // Prepare attrs for Grad node
485
    for (auto it = slot_map[0][4].begin(); it != slot_map[0][4].end(); it++) {
486 487 488 489 490 491
      VLOG(7) << "Prepare fwd attrs: " << it->first
              << " to grad_attrs: " << it->second;
      attrs[it->second] = res_attrs[it->first];
    }
    grad_node->SetAttrs(attrs);
  }
492
  RETURN_PY_NONE
493 494 495
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

496 497
static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
                                             PyObject* args,
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_indices = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 2), 2);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  PADDLE_ENFORCE(non_zero_indices.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero indices must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));
  auto dense_indices =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_indices.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  // TODO(zhangkaihuo): After create SparseTensor, call coalesced() to sort and
  // merge duplicate indices
  std::shared_ptr<phi::SparseCooTensor> coo_tensor =
517 518
      std::make_shared<phi::SparseCooTensor>(
          *dense_indices, *dense_elements, phi::make_ddim(dense_shape));
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
  paddle::experimental::Tensor tensor;
  tensor.set_impl(coo_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

536 537
static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
                                             PyObject* args,
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_crows = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_cols = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 2), 2);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 3), 3);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  PADDLE_ENFORCE(non_zero_crows.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the compressed non-zero rows must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_cols.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero cols must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));

  auto dense_crows =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_crows.impl());
  auto dense_cols =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_cols.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  std::shared_ptr<phi::SparseCsrTensor> csr_tensor =
562 563
      std::make_shared<phi::SparseCsrTensor>(*dense_crows,
                                             *dense_cols,
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                                             *dense_elements,
                                             phi::make_ddim(dense_shape));
  paddle::experimental::Tensor tensor;
  tensor.set_impl(csr_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
582
#if defined(PADDLE_WITH_CUDA)
583 584
static PyObject* eager_api_async_read(PyObject* self,
                                      PyObject* args,
W
wanghuancoder 已提交
585 586 587 588 589 590 591 592 593
                                      PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_read", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_read", "dst", args, 1, false);
  auto& index = GetTensorFromArgs("async_read", "index", args, 2, false);
  auto& buffer = GetTensorFromArgs("async_read", "buffer", args, 3, false);
  auto& offset = GetTensorFromArgs("async_read", "offset", args, 4, false);
  auto& count = GetTensorFromArgs("async_read", "count", args, 5, false);
  PADDLE_ENFORCE_EQ(
594 595
      src.is_gpu_pinned(),
      true,
W
wanghuancoder 已提交
596 597
      platform::errors::InvalidArgument("Required `src` device should be "
                                        "CUDAPinnedPlace, but received %d.",
C
Chen Weihang 已提交
598
                                        src.place()));
W
wanghuancoder 已提交
599
  PADDLE_ENFORCE_EQ(
600 601
      dst.is_gpu(),
      true,
W
wanghuancoder 已提交
602 603
      platform::errors::InvalidArgument(
          "Required `dst` device should be CUDAPlace, but received %d.",
C
Chen Weihang 已提交
604
          dst.place()));
W
wanghuancoder 已提交
605
  PADDLE_ENFORCE_EQ(
606 607
      index.is_cpu(),
      true,
W
wanghuancoder 已提交
608 609
      platform::errors::InvalidArgument(
          "Required `index` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
610
          index.place()));
611 612
  PADDLE_ENFORCE_EQ(buffer.is_gpu_pinned(),
                    true,
W
wanghuancoder 已提交
613 614 615
                    platform::errors::InvalidArgument(
                        "Required `buffer` device should be CUDAPinnedPlace, "
                        "but received %d.",
C
Chen Weihang 已提交
616
                        buffer.place()));
W
wanghuancoder 已提交
617
  PADDLE_ENFORCE_EQ(
618 619
      offset.is_cpu(),
      true,
W
wanghuancoder 已提交
620 621
      platform::errors::InvalidArgument(
          "Required `offset` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
622
          offset.place()));
W
wanghuancoder 已提交
623
  PADDLE_ENFORCE_EQ(
624 625
      count.is_cpu(),
      true,
W
wanghuancoder 已提交
626 627
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
628
          count.place()));
W
wanghuancoder 已提交
629 630 631 632 633 634 635 636 637 638

  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& index_tensor = index;
  auto* buffer_tensor = &buffer;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  auto* dst_data = dst_tensor->mutable_data<float>(dst.place());
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

639 640
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                    dst_tensor->dims().size(),
W
wanghuancoder 已提交
641 642 643
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have same tensor shape, "
                        "except for the first dimension."));
644 645
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                    buffer_tensor->dims().size(),
W
wanghuancoder 已提交
646 647 648 649
                    platform::errors::InvalidArgument(
                        "`src` and `buffer` should have same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
650 651
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i],
                      dst_tensor->dims()[i],
W
wanghuancoder 已提交
652 653 654 655
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
    PADDLE_ENFORCE_EQ(
656 657
        src_tensor.dims()[i],
        buffer_tensor->dims()[i],
W
wanghuancoder 已提交
658 659 660 661
        platform::errors::InvalidArgument(
            "`src` and `buffer` should have the same tensor shape, "
            "except for the first dimension."));
  }
662 663
  PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                    1,
W
wanghuancoder 已提交
664 665 666 667 668 669 670 671 672 673 674
                    platform::errors::InvalidArgument(
                        "`index` tensor should be one-dimensional."));

  auto stream =
      paddle::platform::stream::get_current_stream(deviceId)->raw_stream();

  int64_t numel = 0;  // total copy length
  int64_t copy_flag = offset_tensor.dims()[0];
  int64_t size = src_tensor.numel() / src_tensor.dims()[0];

  if (copy_flag != 0) {
675 676
    PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
677 678
                      platform::errors::InvalidArgument(
                          "`offset` tensor should be one-dimensional."));
679 680
    PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                      1,
W
wanghuancoder 已提交
681 682
                      platform::errors::InvalidArgument(
                          "`count` tensor should be one-dimensional."));
683 684
    PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                      count_tensor.numel(),
W
wanghuancoder 已提交
685 686 687 688 689 690 691 692
                      platform::errors::InvalidArgument(
                          "`offset` and `count` tensor size dismatch."));
    auto* offset_data = offset_tensor.data<int64_t>();
    auto* count_data = count_tensor.data<int64_t>();
    for (int64_t i = 0; i < count_tensor.numel(); i++) {
      numel += count_data[i];
    }
    PADDLE_ENFORCE_LE(
693 694
        numel + index_tensor.numel(),
        buffer_tensor->dims()[0],
W
wanghuancoder 已提交
695 696
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
    PADDLE_ENFORCE_LE(
697 698
        numel + index_tensor.numel(),
        dst_tensor->dims()[0],
W
wanghuancoder 已提交
699 700 701 702 703 704 705
        platform::errors::InvalidArgument("Target tensor size is too small."));

    int64_t src_offset, dst_offset = 0, c;
    auto* src_data = src_tensor.data<float>();
    for (int64_t i = 0; i < offset_tensor.numel(); i++) {
      src_offset = offset_data[i], c = count_data[i];
      PADDLE_ENFORCE_LE(
706 707
          src_offset + c,
          src_tensor.dims()[0],
W
wanghuancoder 已提交
708 709
          platform::errors::InvalidArgument("Invalid offset or count index."));
      PADDLE_ENFORCE_LE(
710 711
          dst_offset + c,
          dst_tensor->dims()[0],
W
wanghuancoder 已提交
712 713
          platform::errors::InvalidArgument("Invalid offset or count index."));
      cudaMemcpyAsync(dst_data + (dst_offset * size),
714 715 716 717
                      src_data + (src_offset * size),
                      c * size * sizeof(float),
                      cudaMemcpyHostToDevice,
                      stream);
W
wanghuancoder 已提交
718 719 720 721
      dst_offset += c;
    }
  } else {
    PADDLE_ENFORCE_LE(
722 723
        index_tensor.numel(),
        buffer_tensor->dims()[0],
W
wanghuancoder 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
  }

  // Select the index data to the buffer
  auto index_select = [](const paddle::experimental::Tensor& src_tensor,
                         const paddle::experimental::Tensor& index_tensor,
                         paddle::experimental::Tensor* buffer_tensor) {
    auto* src_data = src_tensor.data<float>();
    auto* index_data = index_tensor.data<int64_t>();
    auto* buffer_data = buffer_tensor->data<float>();
    const int& slice_size = src_tensor.numel() / src_tensor.dims()[0];
    const int& copy_bytes = slice_size * sizeof(float);
    int64_t c = 0;
    for (int64_t i = 0; i < index_tensor.numel(); i++) {
      std::memcpy(buffer_data + c * slice_size,
739 740
                  src_data + index_data[i] * slice_size,
                  copy_bytes);
W
wanghuancoder 已提交
741 742 743 744 745 746
      c += 1;
    }
  };
  index_select(src_tensor, index_tensor, buffer_tensor);

  // Copy the data to device memory
747 748
  cudaMemcpyAsync(dst_data + (numel * size),
                  buffer_tensor->data<float>(),
W
wanghuancoder 已提交
749
                  index_tensor.numel() * size * sizeof(float),
750 751
                  cudaMemcpyHostToDevice,
                  stream);
752
  RETURN_PY_NONE
W
wanghuancoder 已提交
753 754 755
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

756 757
static PyObject* eager_api_async_write(PyObject* self,
                                       PyObject* args,
W
wanghuancoder 已提交
758 759 760 761 762 763 764
                                       PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_write", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_write", "dst", args, 1, false);
  auto& offset = GetTensorFromArgs("async_write", "offset", args, 2, false);
  auto& count = GetTensorFromArgs("async_write", "count", args, 3, false);
  PADDLE_ENFORCE_EQ(
765 766
      src.is_gpu(),
      true,
W
wanghuancoder 已提交
767 768
      platform::errors::InvalidArgument(
          "Required `src` device should be CUDAPlace, but received %d. ",
C
Chen Weihang 已提交
769
          src.place()));
770 771
  PADDLE_ENFORCE_EQ(dst.is_gpu_pinned(),
                    true,
W
wanghuancoder 已提交
772 773 774
                    platform::errors::InvalidArgument(
                        "Required `dst` device should be CUDAPinnedPlace, "
                        "but received %d. ",
C
Chen Weihang 已提交
775
                        dst.place()));
W
wanghuancoder 已提交
776
  PADDLE_ENFORCE_EQ(
777 778
      offset.is_cpu(),
      true,
W
wanghuancoder 已提交
779 780
      platform::errors::InvalidArgument("Required `offset` device should "
                                        "be CPUPlace, but received %d. ",
C
Chen Weihang 已提交
781
                                        offset.place()));
W
wanghuancoder 已提交
782
  PADDLE_ENFORCE_EQ(
783 784
      count.is_cpu(),
      true,
W
wanghuancoder 已提交
785 786
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d. ",
C
Chen Weihang 已提交
787
          count.place()));
W
wanghuancoder 已提交
788 789 790 791 792 793 794 795 796

  // TODO(daisiming): In future, add index as arguments following
  // async_read.
  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

797 798
  PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                    1,
W
wanghuancoder 已提交
799 800
                    platform::errors::InvalidArgument(
                        "`offset` tensor should be one-dimensional."));
801 802
  PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                    1,
W
wanghuancoder 已提交
803 804
                    platform::errors::InvalidArgument(
                        "`count` tensor should be one-dimensional."));
805 806
  PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                    count_tensor.numel(),
W
wanghuancoder 已提交
807 808
                    platform::errors::InvalidArgument(
                        "`offset` and `count` tensor size dismatch."));
809 810
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                    dst_tensor->dims().size(),
W
wanghuancoder 已提交
811 812 813 814
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have the same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
815 816
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i],
                      dst_tensor->dims()[i],
W
wanghuancoder 已提交
817 818 819 820
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
  }
821

W
wanghuancoder 已提交
822 823 824 825 826 827 828 829 830 831 832 833
  auto stream =
      paddle::platform::stream::get_current_stream(deviceId)->raw_stream();

  int64_t size = src_tensor.numel() / src_tensor.dims()[0];
  auto* src_data = src_tensor.data<float>();
  auto* dst_data = dst_tensor->data<float>();
  const int64_t* offset_data = offset_tensor.data<int64_t>();
  const int64_t* count_data = count_tensor.data<int64_t>();
  int64_t src_offset = 0, dst_offset, c;
  for (int64_t i = 0; i < offset_tensor.numel(); i++) {
    dst_offset = offset_data[i], c = count_data[i];
    PADDLE_ENFORCE_LE(
834 835
        src_offset + c,
        src_tensor.dims()[0],
W
wanghuancoder 已提交
836 837
        platform::errors::InvalidArgument("Invalid offset or count index"));
    PADDLE_ENFORCE_LE(
838 839
        dst_offset + c,
        dst_tensor->dims()[0],
W
wanghuancoder 已提交
840 841
        platform::errors::InvalidArgument("Invalid offset or count index"));
    cudaMemcpyAsync(dst_data + (dst_offset * size),
842 843 844 845
                    src_data + (src_offset * size),
                    c * size * sizeof(float),
                    cudaMemcpyDeviceToHost,
                    stream);
W
wanghuancoder 已提交
846 847
    src_offset += c;
  }
848
  RETURN_PY_NONE
W
wanghuancoder 已提交
849 850
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
851

852 853
static PyObject* eager_api_to_uva_tensor(PyObject* self,
                                         PyObject* args,
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in eager_api_to_uva_tensor.";
  auto new_tensor = std::shared_ptr<paddle::experimental::Tensor>(
      new paddle::experimental::Tensor(
          egr::Controller::Instance().GenerateUniqueName()));
  PyObject* obj = PyTuple_GET_ITEM(args, 0);
  auto array = py::cast<py::array>(py::handle(obj));

  int device_id = 0;
  PyObject* Py_device_id = PyTuple_GET_ITEM(args, 1);
  if (Py_device_id) {
    device_id = CastPyArg2AttrLong(Py_device_id, 1);
  }

  if (py::isinstance<py::array_t<int32_t>>(array)) {
    SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<float>>(array)) {
    SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<double>>(array)) {
    SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
    SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
882 883
    SetUVATensorFromPyArray<paddle::platform::float16>(
        new_tensor, array, device_id);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
  } else {
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning.
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64,"
        "please check your input or input array data type."));
  }

  return ToPyObject(*(new_tensor.get()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
899
#endif
900

901
PyMethodDef variable_functions[] = {
902
    // TODO(jiabin): Remove scale when we have final state tests
903 904 905 906 907 908 909 910
    {"scale",
     (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"run_backward",
     (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
911 912
    {"run_partial_grad",
     (PyCFunction)(void (*)(void))eager_api_run_partial_grad,
913 914 915 916 917 918 919 920 921 922
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_run_custom_op",
     (PyCFunction)(void (*)(void))eager_api_run_costum_op,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"tensor_copy",
     (PyCFunction)(void (*)(void))eager_api_tensor_copy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
923 924
    {"read_next_tensor_list",
     (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list,
925 926
     METH_VARARGS | METH_KEYWORDS,
     NULL},
927 928 929 930
    {"jit_function_call",
     (PyCFunction)(void (*)(void))eager_api_jit_function_call,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
931 932 933
    /**sparse functions**/
    {"sparse_coo_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_coo_tensor,
934 935
     METH_VARARGS | METH_KEYWORDS,
     NULL},
936 937
    {"sparse_csr_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_csr_tensor,
938 939
     METH_VARARGS | METH_KEYWORDS,
     NULL},
940
/**sparse functions**/
W
wanghuancoder 已提交
941
#if defined(PADDLE_WITH_CUDA)
942 943 944 945 946 947 948 949 950 951 952 953
    {"async_read",
     (PyCFunction)(void (*)(void))eager_api_async_read,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"async_write",
     (PyCFunction)(void (*)(void))eager_api_async_write,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"to_uva_tensor",
     (PyCFunction)(void (*)(void))eager_api_to_uva_tensor,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
954
#endif
955 956 957 958 959 960 961 962 963 964 965 966
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle