tensorrt_engine_op.cc 1.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#ifdef PADDLE_WITH_CUDA

G
gongweibao 已提交
17 18 19 20
#include <string>
#include <vector>

#include "paddle/fluid/operators/tensorrt_engine_op.h"
21 22

namespace paddle {
23 24 25

DEFINE_int32(tensorrt_engine_batch_size, 1, "the batch_size of TensorRT");

26 27 28 29 30 31 32
namespace operators {

class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Xs", "A list of inputs.").AsDuplicable();
    AddOutput("Ys", "A list of outputs").AsDuplicable();
33
    AddAttr<std::string>("subgraph", "the subgraph.");
Y
Yan Chunwei 已提交
34
    AddAttr<std::string>("engine_uniq_key", "unique key for the TRT engine.");
N
nhzlx 已提交
35 36
    AddAttr<int>("max_batch_size", "the maximum batch size.");
    AddAttr<int>("workspace_size", "the maximum batch size.");
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    AddComment("TensorRT engine operator.");
  }
};

class TensorRTEngineInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {}
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(tensorrt_engine, ops::TensorRTEngineOp,
                  ops::TensorRTEngineOpMaker, ops::TensorRTEngineOpMaker);

#endif  // PADDLE_WITH_CUDA