parallel.py 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
import time
17
import warnings
18
from multiprocessing import Manager  # noqa: F401
19 20
from multiprocessing import Process  # noqa: F401

21
import paddle
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from paddle.distributed.collective import (
    Group,
    _default_group_name,
    _get_group_map_by_name,
    _new_process_group_impl,
    _set_default_backend,
    _set_default_store,
    _set_group_map,
    _set_group_map_backend,
    _set_group_map_by_name,
    _valid_backend_list,
)
from paddle.distributed.communication.group import _add_new_group
from paddle.distributed.fleet.base.private_helper_function import (  # noqa: F401
    wait_server_ready,
)
from paddle.distributed.fleet.launch_utils import check_backend
39 40

# deprecated module import
41
# (TODO: GhostScreaming) It will be removed later.
42
from paddle.fluid import core
43 44

# (TODO: GhostScreaming) It will be removed later.
45
from paddle.fluid.dygraph.parallel import ParallelEnv
46 47 48 49 50 51 52

# (TODO: GhostScreaming) It will be removed later.
from paddle.framework import (
    _set_expected_place,
    in_dygraph_mode,
    parallel_helper,
)
53

54
__all__ = []
55 56 57

ParallelStrategy = core.ParallelStrategy

58
# NOTE(chenweihang): Maintain a global parallel env to avoid
59 60 61 62 63 64 65 66 67 68
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

69

70
def _start_kv_server(port, http_server_d, size):
71
    from paddle.distributed.fleet.utils.http_server import KVServer
72

73
    http_server = KVServer(int(port), size=size)
74
    http_server.start()
75
    wait_seconds = 3
L
lilong12 已提交
76
    while http_server_d.get("running", False) or not http_server.should_stop():
77 78 79 80
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
81 82
def _is_cpuonly(backend):
    check_backend(backend)
83 84 85 86 87 88 89 90 91
    if (
        backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl']
        and (
            core.is_compiled_with_cuda()
            or core.is_compiled_with_xpu()
            or core.is_compiled_with_npu()
            or core.is_compiled_with_mlu()
        )
    ) or backend == 'xccl':
92

93 94 95 96 97 98
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
99 100 101
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
102 103 104 105
        raise ValueError(
            "paddle.distributed initialize error, "
            "environment variable %s is needed, but not set." % var_name
        )
K
kuizhiqing 已提交
106 107


X
xiongkun 已提交
108
def init_parallel_env():
109
    """
110

111
    Initialize parallel training environment in dynamic graph mode.
112

113
    Note:
114
        Now initialize both `NCCL` and `GLOO` contexts for communication.
115

116 117 118 119 120
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

121 122
    Returns:
        None
123

124 125
    Examples:
        .. code-block:: python
126

127
            # required: gpu
128 129 130 131 132 133 134
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
135
                    super().__init__()
136 137
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
138

139 140 141 142
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
143
                # 1. initialize parallel environment
144 145
                dist.init_parallel_env()

146
                # 2. create data parallel layer & optimizer
147 148 149 150 151 152 153
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

154
                # 3. run layer
155 156 157 158
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
159

160 161 162 163 164 165 166
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
167

168 169
    """

170 171 172 173 174 175 176 177 178 179 180
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
181
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to
182
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
183 184
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
185
    # 1. gpu xpu check, must be gpu or xpu,
186 187 188 189 190 191
    if not (
        is_cpu_only
        or core.is_compiled_with_cuda()
        or core.is_compiled_with_xpu()
        or core.is_compiled_with_npu()
        or core.is_compiled_with_mlu()
S
shentanyue 已提交
192
        or backend == "xccl"
193
    ):
194
        raise NotImplementedError(
195 196
            "If you want to use CPU-only version, please use 'gloo' as backend"
        )
197

198 199
    if backend == "xccl":
        FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
200 201
            parallel_env.device_type
        )
202 203 204 205 206 207 208 209 210 211 212 213 214 215
        _check_var_exists(FLAGS_selected_custom_devices)
    else:
        if not is_cpu_only and core.is_compiled_with_cuda():
            _check_var_exists("FLAGS_selected_gpus")
            backend = "nccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_xpu():
            _check_var_exists('FLAGS_selected_xpus')
            backend = "bkcl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_npu():
            _check_var_exists('FLAGS_selected_npus')
            backend = "hccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_mlu():
            _check_var_exists('FLAGS_selected_mlus')
            backend = "cncl" if backend == "auto" else backend
216

217 218 219 220 221
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

222 223 224 225 226 227
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
228
    if backend == "xccl":
229 230 231
        place = core.CustomPlace(
            parallel_env.device_type, parallel_env.device_id
        )
232
    elif is_cpu_only:
233 234 235 236 237 238 239 240 241 242 243 244 245
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
246

L
lilong12 已提交
247 248 249 250
    if backend in _valid_backend_list and in_dygraph_mode():
        if _default_group_name in _get_group_map_by_name():
            return _get_group_map_by_name()[_default_group_name]
        _set_default_backend(backend)
251 252 253 254 255
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
256 257
            "required to create a process group."
        )
258 259
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
260 261 262 263 264
        endpoints = (
            ":".join([master_addr, master_port])
            if master_addr and master_port
            else None
        )
265
        if endpoints is None:
266 267 268 269 270 271 272
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
273 274
            "with paddle.distributed.run module."
        )
275 276 277
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
278
        stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900"))
279 280 281 282 283 284 285
        default_store = core.TCPStore(
            master_addr,
            master_port,
            is_master,
            world_size,
            timeout=stop_check_timeout,
        )
L
lilong12 已提交
286
        _set_default_store(default_store)
287 288 289 290 291 292 293 294
        pg = _new_process_group_impl(
            backend,
            default_store,
            rank,
            world_size,
            _default_group_name,
            pg_options=None,
        )
295
        ranks = list(range(world_size))
296
        group = Group(rank, 0, ranks, pg=pg, name=_default_group_name)
L
lilong12 已提交
297 298
        _set_group_map_by_name(_default_group_name, group)
        _set_group_map(0, group)
299
        _set_group_map_backend(group, backend)
300
        _add_new_group(group)
301
        parallel_helper._set_parallel_ctx(True)
302 303

        paddle.distributed.barrier(group=group)
304 305
        return group

K
kuizhiqing 已提交
306
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
307
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
308
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
309
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
310 311 312 313 314 315 316 317
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
318 319
            if backend == "heter":
                size = {'_worker': len(node_num)}
320 321 322 323
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size),
            )
L
lilong12 已提交
324 325 326
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
327 328

    # 4. init NCCL ParallelStrategy
329
    strategy = ParallelStrategy()
330 331
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
332 333 334 335
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
336
    strategy.nrings = parallel_env.nrings
337

K
kuizhiqing 已提交
338
    # init nccl or hccl or bkcl or heter context
339 340
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
341 342 343
            core.GLOOParallelContext(strategy, place)
        )
    elif backend == "heter":
K
kuizhiqing 已提交
344
        parallel_helper._set_parallel_ctx(
345 346
            core.HeterParallelContext(strategy, parallel_env.device_id)
        )
347
    elif core.is_compiled_with_cuda():
348
        parallel_helper._set_parallel_ctx(
349 350
            core.NCCLParallelContext(strategy, place)
        )
351 352
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
353 354
            core.BKCLParallelContext(strategy, place)
        )
355 356
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
357 358
            core.HCCLParallelContext(strategy, place)
        )
359 360
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
361 362
            core.CNCLParallelContext(strategy, place)
        )
363

K
kuizhiqing 已提交
364 365 366 367 368
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
369

370
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
371

372 373 374 375
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
376
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
377
        # compare to init_gloo, we don't need to
378 379 380
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
381

382 383
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
398
    return group
399

400

L
LiYuRio 已提交
401
def get_rank(group=None):
402
    """
L
LiYuRio 已提交
403 404
    Returns the rank of current trainer in the given group, ranks are consecutive integers in [0, ``world_size``).
    If none of the group is given, the global group will be used as default.
405

L
LiYuRio 已提交
406 407
    Args:
        group (Group, optional): The communication group you want to get rank of current trainer, use global group as default if group is None.
408 409

    Returns:
L
LiYuRio 已提交
410 411 412 413
        (int) The rank of current trainer in the given group. Return -1 if the process is not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
414 415 416 417

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
418
            # Execute this script using distributed launch with one card configs.
419 420 421
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
422
            dist.init_parallel_env()
423 424 425
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
L
LiYuRio 已提交
426 427 428 429
    if in_dygraph_mode() and group:
        return group.rank

    assert group is None, "Only support group argument in eager mode."
430
    return _get_global_parallel_env().rank
431 432


L
LiYuRio 已提交
433
def get_world_size(group=None):
434
    """
L
LiYuRio 已提交
435 436
    Returns the number of trainers (number of processes participating in current job) in the given group.
    If none of the group is given, the global group will be used as default.
437

L
LiYuRio 已提交
438 439
    Args:
        group (Group, optional): The communication group you want to check world size, use global group as default if group is None.
440 441

    Returns:
L
LiYuRio 已提交
442 443 444 445
        (int) The number of trainers in the given group. Return -1 if the process if not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
446 447 448 449

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
450
            # Execute this script using distributed launch with one card configs.
451 452 453
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
454
            dist.init_parallel_env()
455
            print("The world_size is %d" % dist.get_world_size())
L
LiYuRio 已提交
456
            # The world_size is 1
457
    """
L
LiYuRio 已提交
458 459 460 461
    if in_dygraph_mode() and group:
        return group.world_size

    assert group is None, "Only support group argument in eager mode."
462
    return _get_global_parallel_env().world_size