test_seq_pool.py 6.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15 16 17 18
import unittest
import numpy as np
from op_test import OpTest


19 20 21
class TestSeqAvgPool(OpTest):
    def set_data(self):
        self.op_type = 'sequence_pool'
22
        # one level, batch size is 4
23
        x = np.random.uniform(0.1, 1, [11, 23]).astype('float32')
24
        lod = [[0, 4, 5, 8, 11]]
25
        self.inputs = {'X': (x, lod)}
26

27
        out = np.zeros((4, 23)).astype('float32')
28
        self.outputs = {'Out': out}
29
        return x, lod, out
30

31
    def compute(self, x, lod, out):
D
dzhwinter 已提交
32
        self.attrs = {'pooltype': "AVERAGE"}
33 34 35 36
        for i in range(4):
            sub_x = x[lod[0][i]:lod[0][i + 1], :]
            out[i] = sub_x.mean(axis=0)

37
    def setUp(self):
38 39
        x, lod, out = self.set_data()
        self.compute(x, lod, out)
40 41 42 43 44

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
45 46 47
        # Remove MaxIndex after check_grad is refined.
        self.outputs['MaxIndex'] = \
            np.zeros(self.outputs['Out'].shape).astype('int32')
48 49 50
        self.check_grad(["X"], "Out")


51 52 53
class TestSeqAvgPool2D(TestSeqAvgPool):
    def set_data(self):
        self.op_type = 'sequence_pool'
54 55 56
        # one level, batch size is 4
        x = np.random.uniform(0.1, 1, [13, 3, 17]).astype('float32')
        lod = [[0, 4, 5, 8, 13]]
57
        self.inputs = {'X': (x, lod)}
58 59

        out = np.zeros((4, 3, 17)).astype('float32')
60
        self.outputs = {'Out': out}
61
        return x, lod, out
62

63
    def compute(self, x, lod, out):
D
dzhwinter 已提交
64
        self.attrs = {'pooltype': "AVERAGE"}
65 66 67 68 69
        for i in range(4):
            sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
            out[i] = np.reshape(sub_x.mean(axis=0), (3, 17))


70
class TestSeqSumPool(TestSeqAvgPool):
71
    def compute(self, x, lod, out):
D
dzhwinter 已提交
72
        self.attrs = {'pooltype': "SUM"}
73 74 75
        for i in range(4):
            sub_x = x[lod[0][i]:lod[0][i + 1], :]
            out[i] = sub_x.sum(axis=0)
76

77 78

class TestSeqSumPool2D(TestSeqAvgPool2D):
79
    def compute(self, x, lod, out):
D
dzhwinter 已提交
80
        self.attrs = {'pooltype': "SUM"}
81 82 83
        for i in range(4):
            sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
            out[i] = np.reshape(sub_x.sum(axis=0), (3, 17))
84 85


L
Luo Tao 已提交
86
class TestSeqSqrtPool(TestSeqAvgPool):
87
    def compute(self, x, lod, out):
D
dzhwinter 已提交
88
        self.attrs = {'pooltype': "SQRT"}
L
Luo Tao 已提交
89 90 91 92 93 94 95
        for i in range(4):
            sub_x = x[lod[0][i]:lod[0][i + 1], :]
            len = lod[0][i + 1] - lod[0][i]
            out[i] = sub_x.sum(axis=0) / np.sqrt(len)


class TestSeqSqrtPool2D(TestSeqAvgPool2D):
96
    def compute(self, x, lod, out):
D
dzhwinter 已提交
97
        self.attrs = {'pooltype': "SQRT"}
L
Luo Tao 已提交
98 99 100 101 102 103
        for i in range(4):
            sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
            len = lod[0][i + 1] - lod[0][i]
            out[i] = np.reshape(sub_x.sum(axis=0) / np.sqrt(len), (3, 17))

    def test_check_grad(self):
104 105 106
        # Remove MaxIndex after check_grad is refined.
        self.outputs['MaxIndex'] = \
            np.zeros(self.outputs['Out'].shape).astype('int32')
L
Luo Tao 已提交
107 108 109
        self.check_grad(["X"], "Out", max_relative_error=0.06)


L
Luo Tao 已提交
110
class TestSeqMaxPool(TestSeqAvgPool):
111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def set_data(self):
        self.op_type = 'sequence_pool'
        x = np.random.uniform(0.1, 1, [13, 23]).astype('float32')
        lod = [[0, 4, 5, 8, 13]]
        for i in range(4):
            l = lod[0][i + 1] - lod[0][i]
            x[lod[0][i] + np.random.randint(l), :] += 2.0

        self.inputs = {'X': (x, lod)}

        out = np.zeros((4, 23)).astype('float32')
        self.outputs = {'Out': out}
        return x, lod, out

125
    def compute(self, x, lod, out):
D
dzhwinter 已提交
126
        self.attrs = {'pooltype': "MAX"}
L
Luo Tao 已提交
127 128 129 130 131 132
        for i in range(4):
            sub_x = x[lod[0][i]:lod[0][i + 1], :]
            out[i] = np.amax(sub_x, axis=0)


class TestSeqMaxPool2D(TestSeqAvgPool2D):
133 134 135 136 137 138 139 140 141 142 143 144 145
    def set_data(self):
        self.op_type = 'sequence_pool'
        x = np.random.uniform(0.1, 1, [13, 3, 11]).astype('float32')
        lod = [[0, 4, 5, 8, 13]]
        self.inputs = {'X': (x, lod)}
        for i in range(4):
            l = lod[0][i + 1] - lod[0][i]
            x[lod[0][i] + np.random.randint(l), :] += 1.0

        out = np.zeros((4, 3, 11)).astype('float32')
        self.outputs = {'Out': out}
        return x, lod, out

146
    def compute(self, x, lod, out):
D
dzhwinter 已提交
147
        self.attrs = {'pooltype': "MAX"}
L
Luo Tao 已提交
148
        for i in range(4):
149 150
            sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 11))
            out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 11))
L
Luo Tao 已提交
151 152


L
Luo Tao 已提交
153
class TestSeqLastPool(TestSeqAvgPool):
154
    def compute(self, x, lod, out):
D
dzhwinter 已提交
155
        self.attrs = {'pooltype': "LAST"}
L
Luo Tao 已提交
156 157 158 159 160 161
        for i in range(4):
            sub_x = x[lod[0][i]:lod[0][i + 1], :]
            out[i] = sub_x[-1, :]


class TestSeqLastPool2D(TestSeqAvgPool2D):
162
    def compute(self, x, lod, out):
D
dzhwinter 已提交
163
        self.attrs = {'pooltype': "LAST"}
L
Luo Tao 已提交
164 165 166 167 168 169
        for i in range(4):
            sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
            out[i] = np.reshape(sub_x[-1, :], (3, 17))


class TestSeqFirstPool(TestSeqAvgPool):
170
    def compute(self, x, lod, out):
D
dzhwinter 已提交
171
        self.attrs = {'pooltype': "FIRST"}
L
Luo Tao 已提交
172 173 174 175 176 177
        for i in range(4):
            sub_x = x[lod[0][i]:lod[0][i + 1], :]
            out[i] = sub_x[0, :]


class TestSeqFirstPool2D(TestSeqAvgPool2D):
178
    def compute(self, x, lod, out):
D
dzhwinter 已提交
179
        self.attrs = {'pooltype': "FIRST"}
L
Luo Tao 已提交
180 181 182 183 184
        for i in range(4):
            sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
            out[i] = np.reshape(sub_x[0, :], (3, 17))


185 186
if __name__ == '__main__':
    unittest.main()