fill_constant_op.h 4.7 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <limits>
18 19
#include <sstream>
#include <string>
X
Xin Pan 已提交
20
#include <vector>
21

X
Xin Pan 已提交
22 23 24
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
25
#include "paddle/fluid/operators/utils.h"
X
Xin Pan 已提交
26 27 28

namespace paddle {
namespace operators {
L
liym27 已提交
29 30 31

using Tensor = framework::Tensor;

X
Xin Pan 已提交
32 33 34 35 36 37
template <typename T>
class FillConstantKernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto data_type =
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
H
hong 已提交
38

39 40
    auto str_value = ctx.Attr<std::string>("str_value");
    auto float_value = ctx.Attr<float>("value");
X
Xin Pan 已提交
41 42 43 44 45
    auto force_cpu = ctx.Attr<bool>("force_cpu");
    framework::Tensor *tensor = nullptr;

    framework::Variable *out_var = ctx.OutputVar("Out");

46 47 48 49
    T value;
    if (str_value.empty()) {
      value = static_cast<T>(float_value);
    } else {
50 51 52
      // handle NaN/Inf first, which cannot be read from stream.
      if (str_value == "inf") {
        value = static_cast<T>(std::numeric_limits<double>::infinity());
L
Leo Chen 已提交
53 54
      } else if (str_value == "-inf") {
        value = static_cast<T>(-std::numeric_limits<double>::infinity());
55 56
      } else if (str_value == "nan") {
        value = static_cast<T>(std::numeric_limits<double>::quiet_NaN());
57
      } else {
58 59 60 61 62 63 64 65 66 67
        std::stringstream convert_stream(str_value);
        if (std::is_same<int64_t, T>::value) {
          int64_t tmp_value;
          convert_stream >> tmp_value;
          value = static_cast<T>(tmp_value);
        } else {
          double tmp_value;
          convert_stream >> tmp_value;
          value = static_cast<T>(tmp_value);
        }
68 69
      }
    }
W
wangchaochaohu 已提交
70 71 72 73 74 75 76 77 78 79
    if (ctx.HasInput("ValueTensor")) {
      auto *value_tensor = ctx.Input<framework::Tensor>("ValueTensor");
      PADDLE_ENFORCE_EQ(
          value_tensor->numel(), 1,
          platform::errors::InvalidArgument(
              "When use Tensor as value to set Tensor value in fill_cosntant, "
              "value input(ValueTensor) size must be 1, but get %d",
              value_tensor->numel()));
      const T *tensor_data = value_tensor->data<T>();
      framework::Tensor cpu_tensor;
80 81 82
      auto tmp_place = value_tensor->place();
      if (platform::is_gpu_place(tmp_place) ||
          platform::is_xpu_place(tmp_place)) {
W
wangchaochaohu 已提交
83 84 85 86 87
        TensorCopySync(*value_tensor, platform::CPUPlace(), &cpu_tensor);
        tensor_data = cpu_tensor.data<T>();
      }
      value = tensor_data[0];
    }
88
    auto shape = GetShape(ctx);
L
liym27 已提交
89

X
Xin Pan 已提交
90 91
    if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
L
liym27 已提交
92
      tensor->Resize(shape);
X
Xin Pan 已提交
93 94
    } else if (out_var->IsType<framework::SelectedRows>()) {
      tensor = out_var->GetMutable<framework::SelectedRows>()->mutable_value();
L
liym27 已提交
95
      tensor->Resize(shape);
X
Xin Pan 已提交
96
    } else {
97 98 99
      PADDLE_THROW(platform::errors::Unimplemented(
          "In fill constant Op, the output only supports SelectedRows and "
          "LoDTensor."));
X
Xin Pan 已提交
100 101
    }

102 103 104 105
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
    bool cpu_place = force_cpu || ctx.GetPlace() == platform::CPUPlace();
    if (cpu_place) {
X
Xin Pan 已提交
106
      tensor->mutable_data(platform::CPUPlace(), data_type);
107 108 109 110 111 112
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(reinterpret_cast<const platform::CPUDeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
    }
#ifdef PADDLE_WITH_CUDA
    if (!cpu_place) {
X
Xin Pan 已提交
113
      tensor->mutable_data(ctx.GetPlace(), data_type);
114 115 116
      math::SetConstant<platform::CUDADeviceContext, T> functor;
      functor(reinterpret_cast<const platform::CUDADeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
X
Xin Pan 已提交
117
    }
118 119 120 121 122 123 124 125
#endif
#ifdef PADDLE_WITH_XPU
    if (!cpu_place) {
      tensor->mutable_data(ctx.GetPlace(), data_type);
      math::SetConstant<platform::XPUDeviceContext, T> functor;
      functor(reinterpret_cast<const platform::XPUDeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
    }
126
#endif
X
Xin Pan 已提交
127 128 129 130
  }
};
}  // namespace operators
}  // namespace paddle