fill_constant_op.h 4.2 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18
#include <sstream>
#include <string>
X
Xin Pan 已提交
19 20 21 22
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
23
#include "paddle/fluid/operators/utils.h"
X
Xin Pan 已提交
24 25 26

namespace paddle {
namespace operators {
L
liym27 已提交
27 28 29

using Tensor = framework::Tensor;

X
Xin Pan 已提交
30 31 32 33 34 35
template <typename T>
class FillConstantKernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto data_type =
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
H
hong 已提交
36

37 38
    auto str_value = ctx.Attr<std::string>("str_value");
    auto float_value = ctx.Attr<float>("value");
X
Xin Pan 已提交
39 40 41 42 43
    auto force_cpu = ctx.Attr<bool>("force_cpu");
    framework::Tensor *tensor = nullptr;

    framework::Variable *out_var = ctx.OutputVar("Out");

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    T value;
    if (str_value.empty()) {
      value = static_cast<T>(float_value);
    } else {
      std::stringstream convert_stream(str_value);
      if (std::is_same<int64_t, T>::value) {
        int64_t tmp_value;
        convert_stream >> tmp_value;
        value = static_cast<T>(tmp_value);
      } else {
        double tmp_value;
        convert_stream >> tmp_value;
        value = static_cast<T>(tmp_value);
      }
    }
W
wangchaochaohu 已提交
59 60 61 62 63 64 65 66 67 68
    if (ctx.HasInput("ValueTensor")) {
      auto *value_tensor = ctx.Input<framework::Tensor>("ValueTensor");
      PADDLE_ENFORCE_EQ(
          value_tensor->numel(), 1,
          platform::errors::InvalidArgument(
              "When use Tensor as value to set Tensor value in fill_cosntant, "
              "value input(ValueTensor) size must be 1, but get %d",
              value_tensor->numel()));
      const T *tensor_data = value_tensor->data<T>();
      framework::Tensor cpu_tensor;
69 70 71
      auto tmp_place = value_tensor->place();
      if (platform::is_gpu_place(tmp_place) ||
          platform::is_xpu_place(tmp_place)) {
W
wangchaochaohu 已提交
72 73 74 75 76
        TensorCopySync(*value_tensor, platform::CPUPlace(), &cpu_tensor);
        tensor_data = cpu_tensor.data<T>();
      }
      value = tensor_data[0];
    }
77
    auto shape = GetShape(ctx);
L
liym27 已提交
78

X
Xin Pan 已提交
79 80
    if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
L
liym27 已提交
81
      tensor->Resize(shape);
X
Xin Pan 已提交
82 83
    } else if (out_var->IsType<framework::SelectedRows>()) {
      tensor = out_var->GetMutable<framework::SelectedRows>()->mutable_value();
L
liym27 已提交
84
      tensor->Resize(shape);
X
Xin Pan 已提交
85
    } else {
86 87 88
      PADDLE_THROW(platform::errors::Unimplemented(
          "In fill constant Op, the output only supports SelectedRows and "
          "LoDTensor."));
X
Xin Pan 已提交
89 90
    }

91 92 93 94
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
    bool cpu_place = force_cpu || ctx.GetPlace() == platform::CPUPlace();
    if (cpu_place) {
X
Xin Pan 已提交
95
      tensor->mutable_data(platform::CPUPlace(), data_type);
96 97 98 99 100 101
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(reinterpret_cast<const platform::CPUDeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
    }
#ifdef PADDLE_WITH_CUDA
    if (!cpu_place) {
X
Xin Pan 已提交
102
      tensor->mutable_data(ctx.GetPlace(), data_type);
103 104 105
      math::SetConstant<platform::CUDADeviceContext, T> functor;
      functor(reinterpret_cast<const platform::CUDADeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
X
Xin Pan 已提交
106
    }
107 108 109 110 111 112 113 114
#endif
#ifdef PADDLE_WITH_XPU
    if (!cpu_place) {
      tensor->mutable_data(ctx.GetPlace(), data_type);
      math::SetConstant<platform::XPUDeviceContext, T> functor;
      functor(reinterpret_cast<const platform::XPUDeviceContext &>(dev_ctx),
              tensor, static_cast<T>(value));
    }
115
#endif
X
Xin Pan 已提交
116 117 118 119
  }
};
}  // namespace operators
}  // namespace paddle