recv_op.cc 7.7 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14 15 16 17 18 19 20 21 22 23 24 25

#include <stdint.h>
#include <sys/stat.h>
#include <ostream>
#include <thread>

#include <unistd.h>

#include "paddle/framework/executor.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
T
typhoonzero 已提交
26
#include "paddle/framework/proto_desc.h"
武毅 已提交
27 28 29
#include "paddle/operators/detail/send_recv_impl.h"
#include "paddle/operators/detail/simple_block_queue.h"

T
typhoonzero 已提交
30 31
#define LISTEN_TERMINATE_MESSAGE "TERMINATE@RECV"

武毅 已提交
32 33 34
namespace paddle {
namespace operators {

Y
Yancey 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48
static void CreateTensorFromMessageType(framework::Variable *var,
                                        sendrecv::VarType var_type) {
  if (var_type == sendrecv::VarType::LOD_TENSOR) {
    var->GetMutable<framework::LoDTensor>();
  } else if (var_type == sendrecv::VarType::SELECTED_ROWS) {
    var->GetMutable<framework::SelectedRows>();
  } else {
    PADDLE_THROW(
        "VraibleMessage type %d is not in "
        "[LoDTensor, SelectedRows]",
        var_type);
  }
}

武毅 已提交
49 50 51 52 53 54 55 56
void RunServer(Server **rpc_server,
               std::shared_ptr<detail::SendRecvServerImpl> service,
               const std::string &server_address) {
  ServerBuilder builder;
  builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
  builder.RegisterService(service.get());
  std::unique_ptr<Server> server(builder.BuildAndStart());
  *rpc_server = server.get();
T
typhoonzero 已提交
57
  LOG(INFO) << "Server listening on " << server_address;
武毅 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  server->Wait();
}

class RecvOp : public framework::OperatorBase {
 public:
  RecvOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {
    if (!rpc_service_) {
      rpc_service_.reset(new detail::SendRecvServerImpl());
      std::string endpoint = Attr<std::string>("endpoint");
      server_thread_.reset(
          new std::thread(RunServer, &rpc_server_, rpc_service_, endpoint));
    }
  }

T
typhoonzero 已提交
75
  void Stop() override {
Y
Yancey 已提交
76
    detail::MessageWithName term_msg;
T
typhoonzero 已提交
77 78
    term_msg.first = LISTEN_TERMINATE_MESSAGE;
    rpc_service_->Push(term_msg);
武毅 已提交
79 80 81 82
    rpc_server_->Shutdown();
    server_thread_->join();
  }

T
done  
typhoonzero 已提交
83
  std::string GetGradVarNameForTrainer(const std::string &varname) const {
T
typhoonzero 已提交
84
    if (grads_counter_.find(varname) == grads_counter_.end()) {
T
done  
typhoonzero 已提交
85 86 87 88 89 90 91 92
      grads_counter_[varname] = 0;
    }
    char ret[256];
    snprintf(ret, sizeof(ret), "%s.trainer_%d", varname.c_str(),
             grads_counter_[varname]++);
    return std::string(ret);
  }

武毅 已提交
93
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
94
           const platform::Place &dev_place) const override {
T
typhoonzero 已提交
95
    // FIXME(typhoonzero): no new scopes for every run.
武毅 已提交
96
    framework::Scope &recv_scope = scope.NewScope();
T
typhoonzero 已提交
97
    rpc_service_->SetScope(&recv_scope);
T
typhoonzero 已提交
98 99
    auto param_list = Attr<std::vector<std::string>>("ParamList");
    auto grad_list = Attr<std::vector<std::string>>("GradList");
T
done  
typhoonzero 已提交
100
    auto trainer_count = Attr<int>("Trainers");
T
typhoonzero 已提交
101
    size_t param_count = param_list.size();
T
typhoonzero 已提交
102
    rpc_service_->Reset();
T
typhoonzero 已提交
103
    // TODO(typhoonzero): change this to a while_op for every cluster-batch.
T
typhoonzero 已提交
104 105
    bool exit_flag = false;
    while (!exit_flag) {
T
done  
typhoonzero 已提交
106 107 108
      // Get from multiple trainers, we don't care about order in which
      // the gradient arrives, just add suffix 0~n then average the gradient.
      for (size_t i = 0; i < param_count * trainer_count; ++i) {
T
typhoonzero 已提交
109
        // blocking get one var from client.
Y
Yancey 已提交
110
        const detail::MessageWithName &v = rpc_service_->Get();
T
typhoonzero 已提交
111
        auto grad_var_name = v.first;
T
typhoonzero 已提交
112 113 114 115
        if (grad_var_name == LISTEN_TERMINATE_MESSAGE) {
          exit_flag = true;
          break;
        }
T
typhoonzero 已提交
116 117 118 119
        auto it = std::find(grad_list.begin(), grad_list.end(), grad_var_name);
        std::string param_var_name;
        if (it != grad_list.end()) {
          param_var_name = param_list[it - grad_list.begin()];
T
typhoonzero 已提交
120 121
        } else {
          LOG(ERROR) << "grad have no paired param found!";
T
typhoonzero 已提交
122
        }
T
typhoonzero 已提交
123 124
        VLOG(3) << "recved grad: " << grad_var_name
                << " updating param: " << param_var_name;
T
typhoonzero 已提交
125 126
        auto *merged_grad = recv_scope.FindVar(grad_var_name);
        if (merged_grad == nullptr) {
Y
Yancey 已提交
127
          auto *ptr = recv_scope.Var(grad_var_name);
Y
Yancey 已提交
128
          CreateTensorFromMessageType(ptr, v.second.type());
Y
Yancey 已提交
129
          VLOG(3) << "Create Variable " << grad_var_name
Y
Yancey 已提交
130 131
                  << " on recv scope, which pointer is " << ptr << " type is "
                  << v.second.type();
T
typhoonzero 已提交
132 133
        }

T
done  
typhoonzero 已提交
134
        if (trainer_count > 1) {
T
typhoonzero 已提交
135
          grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
T
done  
typhoonzero 已提交
136 137
        }

T
typhoonzero 已提交
138
        auto *var = recv_scope.Var(grad_var_name);
Y
Yancey 已提交
139 140 141 142
        platform::DeviceContextPool &pool =
            platform::DeviceContextPool::Instance();
        auto &dev_ctx = *pool.Get(dev_place);
        detail::DeserializeFromMessage(v.second, dev_ctx, var);
T
typhoonzero 已提交
143 144 145
      }
      if (exit_flag) {
        break;
T
typhoonzero 已提交
146
      }
T
typhoonzero 已提交
147
      rpc_service_->Reset();
武毅 已提交
148

T
typhoonzero 已提交
149
      std::string program_str = Attr<std::string>("OptimizeProgram");
T
typhoonzero 已提交
150
      framework::proto::ProgramDesc program_desc;
T
typhoonzero 已提交
151
      program_desc.ParseFromString(program_str);
T
typhoonzero 已提交
152
      framework::ProgramDesc program(program_desc);
T
typhoonzero 已提交
153
      framework::Executor executor(dev_place);
T
typhoonzero 已提交
154 155 156 157 158 159 160
      // Run sub graph to get optimized tensor
      try {
        executor.Run(program, &recv_scope, 0, /*global_block*/
                     false /*create_local_scope*/, false /*create_vars*/);
      } catch (std::exception &e) {
        LOG(ERROR) << "run sub program error " << e.what();
      }
T
typhoonzero 已提交
161
      rpc_service_->Done();
T
typhoonzero 已提交
162
      grads_counter_.clear();
T
typhoonzero 已提交
163
    }  // while(true)
武毅 已提交
164 165 166 167 168 169 170 171 172
  }

 protected:
  // grpc server instance to track status and gracefully shutdown.
  // borrow an pointer from server thread.
  Server *rpc_server_{nullptr};
  // grpc send/recv service implement to register.
  std::shared_ptr<detail::SendRecvServerImpl> rpc_service_;
  std::shared_ptr<std::thread> server_thread_;
T
done  
typhoonzero 已提交
173
  mutable std::unordered_map<std::string, int> grads_counter_;
武毅 已提交
174 175 176 177
};

class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
178
  RecvOpMaker(OpProto *proto, OpAttrChecker *op_checker)
武毅 已提交
179
      : OpProtoAndCheckerMaker(proto, op_checker) {
T
typhoonzero 已提交
180
    AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable();
武毅 已提交
181 182 183 184 185 186 187 188 189 190
    AddComment(R"DOC(
Recv operator

This operator will recv tensor from send_op
)DOC");
    AddAttr<std::string>("endpoint",
                         "(string, default 127.0.0.1:6164)"
                         "IP address to listen on.")
        .SetDefault("127.0.0.1:6164")
        .AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
T
typhoonzero 已提交
191 192
    AddAttr<std::string>("OptimizeProgram", "type string",
                         "Serialized ProgramDesc string for recv to run.");
T
typhoonzero 已提交
193 194
    AddAttr<std::vector<std::string>>(
        "ParamList", "type list of string",
Y
Yancey1989 已提交
195 196
        "grad->param name mapping to find which param to optimize.")
        .SetDefault({});
T
typhoonzero 已提交
197 198
    AddAttr<std::vector<std::string>>(
        "GradList", "type list of string",
Y
Yancey1989 已提交
199 200
        "grad->param name mapping to find which param to optimize.")
        .SetDefault({});
T
done  
typhoonzero 已提交
201 202 203
    AddAttr<int>("Trainers", "type int",
                 "Number of trainers in the current cluster job")
        .SetDefault(1);
武毅 已提交
204 205 206 207 208 209 210 211 212
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(recv, ops::RecvOp, ops::RecvOpMaker);