recv_op.cc 6.8 KB
Newer Older
武毅 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <stdint.h>
#include <sys/stat.h>
T
typhoonzero 已提交
17
#include <iostream>
武毅 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#include <ostream>
#include <thread>

#include <unistd.h>

#include "paddle/framework/data_type.h"
#include "paddle/framework/executor.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/detail/send_recv_impl.h"
#include "paddle/operators/detail/simple_block_queue.h"

namespace paddle {
namespace operators {

void RunServer(Server **rpc_server,
               std::shared_ptr<detail::SendRecvServerImpl> service,
               const std::string &server_address) {
  ServerBuilder builder;
  builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
  builder.RegisterService(service.get());
  std::unique_ptr<Server> server(builder.BuildAndStart());
  *rpc_server = server.get();
  LOG(INFO) << "Server listening on " << server_address << std::endl;
  server->Wait();
}

class RecvOp : public framework::OperatorBase {
 public:
  RecvOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {
    if (!rpc_service_) {
      rpc_service_.reset(new detail::SendRecvServerImpl());
      std::string endpoint = Attr<std::string>("endpoint");
      server_thread_.reset(
          new std::thread(RunServer, &rpc_server_, rpc_service_, endpoint));
    }
  }

  virtual ~RecvOp() {
    rpc_server_->Shutdown();
    server_thread_->join();
  }

T
done  
typhoonzero 已提交
65 66 67 68 69 70 71 72 73 74
  std::string GetGradVarNameForTrainer(const std::string &varname) const {
    if (grads_counter_.find(varname) != grads_counter_.end()) {
      grads_counter_[varname] = 0;
    }
    char ret[256];
    snprintf(ret, sizeof(ret), "%s.trainer_%d", varname.c_str(),
             grads_counter_[varname]++);
    return std::string(ret);
  }

武毅 已提交
75 76
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
T
typhoonzero 已提交
77
    // FIXME(typhoonzero): no new scopes for every run.
武毅 已提交
78
    framework::Scope &recv_scope = scope.NewScope();
T
typhoonzero 已提交
79 80
    auto param_list = Attr<std::vector<std::string>>("ParamList");
    auto grad_list = Attr<std::vector<std::string>>("GradList");
T
done  
typhoonzero 已提交
81
    auto trainer_count = Attr<int>("Trainers");
T
typhoonzero 已提交
82
    size_t param_count = param_list.size();
T
typhoonzero 已提交
83 84
    // TODO(typhoonzero): change this to a while_op for every cluster-batch.
    while (true) {
T
done  
typhoonzero 已提交
85 86 87
      // Get from multiple trainers, we don't care about order in which
      // the gradient arrives, just add suffix 0~n then average the gradient.
      for (size_t i = 0; i < param_count * trainer_count; ++i) {
T
typhoonzero 已提交
88 89 90 91 92 93 94 95 96 97
        // blocking get one var from client.
        const detail::TensorWithName &v = rpc_service_->Get();
        auto grad_var_name = v.first;
        auto it = std::find(grad_list.begin(), grad_list.end(), grad_var_name);
        std::string param_var_name;
        if (it != grad_list.end()) {
          param_var_name = param_list[it - grad_list.begin()];
        }
        VLOG(10) << "recved grad: " << grad_var_name
                 << " updating param: " << param_var_name;
T
done  
typhoonzero 已提交
98 99 100 101 102 103 104 105
        if (trainer_count > 1) {
          auto *var = recv_scope.FindVar(grad_var_name);
          if (var != nullptr) {
            // must rename the var to different names to merge gradient.
            grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
          }
        }

T
typhoonzero 已提交
106 107 108 109
        auto *var = recv_scope.Var(grad_var_name);
        auto *tensor = var->GetMutable<framework::LoDTensor>();
        // FIXME(typhoonzero): do not copy
        framework::CopyFrom(v.second, dev_ctx.GetPlace(), dev_ctx, tensor);
T
typhoonzero 已提交
110
      }
武毅 已提交
111

T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120 121 122 123
      std::string program_str = Attr<std::string>("OptimizeProgram");
      framework::ProgramDesc program_desc;
      program_desc.ParseFromString(program_str);
      framework::ProgramDescBind program(program_desc);
      framework::Executor executor(dev_ctx);
      // Run sub graph to get optimized tensor
      try {
        executor.Run(program, &recv_scope, 0, /*global_block*/
                     false /*create_local_scope*/, false /*create_vars*/);
      } catch (std::exception &e) {
        LOG(ERROR) << "run sub program error " << e.what();
      }
武毅 已提交
124

T
typhoonzero 已提交
125 126 127 128 129 130 131 132
      for (size_t i = 0; i < param_count; ++i) {
        auto *out_var = recv_scope.FindVar(param_list[i]);
        detail::TensorWithName out;
        out.first = param_list[i];
        out.second = out_var->Get<framework::LoDTensor>();
        rpc_service_->Push(out);
      }
    }  // while(true)
武毅 已提交
133 134 135 136 137 138 139 140 141
  }

 protected:
  // grpc server instance to track status and gracefully shutdown.
  // borrow an pointer from server thread.
  Server *rpc_server_{nullptr};
  // grpc send/recv service implement to register.
  std::shared_ptr<detail::SendRecvServerImpl> rpc_service_;
  std::shared_ptr<std::thread> server_thread_;
T
done  
typhoonzero 已提交
142
  mutable std::unordered_map<std::string, int> grads_counter_;
武毅 已提交
143 144 145 146 147 148
};

class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  RecvOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
T
typhoonzero 已提交
149
    AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable();
武毅 已提交
150 151 152 153 154 155 156 157 158 159
    AddComment(R"DOC(
Recv operator

This operator will recv tensor from send_op
)DOC");
    AddAttr<std::string>("endpoint",
                         "(string, default 127.0.0.1:6164)"
                         "IP address to listen on.")
        .SetDefault("127.0.0.1:6164")
        .AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
T
typhoonzero 已提交
160 161
    AddAttr<std::string>("OptimizeProgram", "type string",
                         "Serialized ProgramDesc string for recv to run.");
T
typhoonzero 已提交
162 163 164 165 166 167
    AddAttr<std::vector<std::string>>(
        "ParamList", "type list of string",
        "grad->param name mapping to find which param to optimize.");
    AddAttr<std::vector<std::string>>(
        "GradList", "type list of string",
        "grad->param name mapping to find which param to optimize.");
T
done  
typhoonzero 已提交
168 169 170
    AddAttr<int>("Trainers", "type int",
                 "Number of trainers in the current cluster job")
        .SetDefault(1);
武毅 已提交
171 172 173 174 175 176 177 178 179
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(recv, ops::RecvOp, ops::RecvOpMaker);