tensor.h 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

/*
 * This file defines the general interface for DDim and Tensor, which is used in
 * server and mobile framework, to make the framework on the two devices share
 * the same code, we clear up the methods and make the different implementations
 * looks the same.
 */

#include <vector>
#include "paddle/fluid/lite/core/target_wrapper.h"

namespace paddle {
namespace lite {

/*
 * This class defines the basic interfaces of the DDims for server and mobile.
 * For the DDims's implementation is too tedious, we add a simple implementation
 * for mobile, and use this interface to share the framework both for mobile and
 * server.
 *
 * The derived should implement following interfaces:
 * ConstructFrom
 * operator[]
 * Vectorize
 * size
 */
template <typename DDimT>
class DDimBase {
 public:
  using value_type = int64_t;

  DDimBase() = default;

  explicit DDimBase(const std::vector<int64_t> &x) { self()->ConstructFrom(x); }
50 51
  value_type operator[](int offset) const { return (*const_self())[offset]; }
  value_type &operator[](int offset) { return (*self())[offset]; }
52
  std::vector<int64_t> Vectorize() const { return self()->Vectorize(); }
53 54 55 56 57
  size_t size() const { return const_self()->size(); }
  bool empty() const { return const_self()->empty(); }

  value_type production() const {
    value_type res = 1;
S
Superjomn 已提交
58
    for (size_t i = 0; i < const_self()->size(); i++) {
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
      res *= (*const_self())[i];
    }
    return res;
  }

  DDimT Slice(int start, int end) const {
    std::vector<value_type> vec;
    for (int i = start; i < end; i++) {
      vec.push_back((*const_self())[i]);
    }
    return DDimT(vec);
  }

  DDimT Flattern2D(int col) const {
    return DDimT(std::vector<value_type>(
        {Slice(0, col).production(), Slice(col, size()).production()}));
  }

77 78 79 80 81
  std::string repr() const {
    std::stringstream ss;
    ss << "{";
    for (size_t i = 0; i < this->size() - 1; i++) {
      ss << (*this)[i] << ",";
82
    }
83 84 85 86
    if (!this->empty()) ss << (*this)[size() - 1];
    ss << "}";
    return ss.str();
  }
87

88 89
  friend std::ostream &operator<<(std::ostream &os, const DDimT &dims) {
    os << dims.repr();
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    return os;
  }

 private:
  DDimT *self() { return static_cast<DDimT *>(this); }
  const DDimT *const_self() const { return static_cast<const DDimT *>(this); }
};

/*
 * This class defines the basic interfaces of the tensors implemented for
 * server and mobile. It use the CRTR technology to accelerate the runtime
 * performance.
 */
template <typename TensorT>
class TensorBase {
 public:
  TensorBase() = default;
107 108 109 110 111 112

  template <typename T, typename DimT>
  void Assign(T *data, const DimT &dim) {
    self()->Assign(data, dim);
  }

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  TargetType target() const { return self()->target(); }

  template <typename T>
  T *mutable_data() {
    return self()->template mutable_data<T>();
  }

  template <typename T>
  T *mutable_data(TargetType target) {
    return self()->template mutable_data<T>(target);
  }

  template <typename T>
  const T *data() {
    return self()->template data<T>();
  }

  template <typename DimT>
  void Resize(const DimT &dims) {
    self()->Resize(dims);
  }

  template <typename DDimT>
  DDimT dims() {
    return self()->dims();
  }

  template <typename LoDT>
  const LoDT &lod() const {
    return const_self()->lod();
  }
  template <typename LoDT>
  LoDT *mutable_lod() {
    return self()->mutable_lod();
  }
  template <typename T>
  const T &data() const {
    return const_self()->data();
  }

S
Superjomn 已提交
153 154
  const void *raw_data() const { return const_self()->data(); }

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  size_t data_size() const { return const_self()->dims().production(); }

  void ShareDataWith(const TensorBase &other) { self()->ShareDataWith(other); }
  void CopyDataFrom(const TensorBase &other) { self()->CopyDataFrom(other); }

  friend std::ostream &operator<<(std::ostream &os, const TensorT &tensor) {
    os << "Tensor:" << '\n';
    os << "dim: " << tensor.dims() << '\n';
    for (int i = 0; i < tensor.dims().production(); i++) {
      os << tensor.template data<float>()[i] << " ";
    }
    os << "\n";
    return os;
  }

 private:
  TensorT *self() { return static_cast<TensorT *>(this); }
  const TensorT *const_self() const {
    return static_cast<const TensorT *>(this);
  }
};

}  // namespace lite
}  // namespace paddle